197k views
5 votes
Prove that


sinAsin(A+2B)-sinBsin(B+2A)=sin(A-B)sin(A+B)

pls help...​

User Mayou
by
6.4k points

1 Answer

1 vote

Answer:

The identity sinA sin(A+2B) - sinB sin(B+2A) = (sinA)^2 - (sinB)^2 is proved below.

Explanation:

sinA sin(A+2B) - sinB sin(B+2A) =

sinA ( sin(A) cos(2B) + sin(2B) cos(A) ) - sinB (sin(B)cos(2A) + sin(2A)cos(B) ) =

sinA( sinA [cos^2(B)- sin^2(B)] + 2 sin(B) cos(B) cosA ) - sinB( sinB(cos^2A-sin^2A)+2 sinA cosA cos(B) ) =

sin^2A(cos^2B-sin^2B) + 2 sinB cosB sin(A) cos(A) - sin^2B(cos^2A-sin^2A) - 2 sinA sinB cosA cosB =

sin^2A(cos^2B-sin^2B) - sin^2B(cos^2A-sin^2A) =

sin^2Acos^2B - sin^2Asin^2B - sin^2Bcos^2A + sin^2Bsin^2A =

sin^2Acos^2B - sin^2Bcos^2A =

(1 - cos^2A)(cos^2B) - (1 - cos^2B)(cos^2A) =

cos^2B - cos^2A cos^2B - cos^2A + cos^2B cos^2A =

cos^2B - cos^2A =

1 - sin^2B - (1 - sin^2A) =

sin^2 (A) - sin^2 (B)

User Tushar Sharma
by
6.2k points