164k views
0 votes
Evaluate:

log_(√(3) )(729) \\
Give answer please..


User Gastove
by
3.5k points

2 Answers

4 votes
I’m not sure but
1.66992439152
User James Agnew
by
3.9k points
5 votes


\large\underline{\sf{Solution-}}

Given Logarithmic expression is


\rm \longmapsto\: log_( √(3) )(729)

Let first factorize 729


\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}c {\underline{\sf{3}}}&{\underline{\sf{\:\:729 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:}}\\\underline{\sf{}}&{\sf{\:\:3 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

So,


\purple{\rm \longmapsto\:729 = 3 * 3 * 3 * 3 * 3 * 3}


\purple{\rm \longmapsto\:729 = {3}^(6) }


\purple{\rm \longmapsto\:729 = {( [{ √(3) ]}^(2)) }^(6) }


\purple{\rm \longmapsto\:729 = {( √(3) )}^(12)}

So,


\rm \longmapsto\: log_( √(3) )(729)

can be rewritten as


\rm \:  =  \: log_( √(3) )( {( √(3)) }^(12) )

We know,


\purple{\rm \longmapsto\:\boxed{\tt{ log_(a)( {a}^(x) ) \: = \: x \: }}}

So, using this identity, we get


\rm \:  =  \: 12

Hence,


\green{\rm\implies \:\boxed{\tt{ \: \: log_( √(3) )(729) \: = \: 12 \: \: }}}

User Noumenon
by
4.2k points