194k views
0 votes
\frac { 3 ^ { p + 1 } - 3 ^ { p } } { 2 \times 3 ^ { p } } = 1​

User Greig
by
5.2k points

2 Answers

5 votes

Answer:

True for all p

Explanation:

Given equation:


(3^(p+1)-3^(p))/(2 * 3^(p))=1

Multiply both sides by
2 * 3^p:


\implies 3^(p+1)-3^p=2 * 3^p

Add
3^p to both sides:


\implies 3^(p+1)-3^p+3^p=2 * 3^p+3^p


\implies 3^(p+1)=3 * 3^p

Rewrite 3 as 3¹:


\implies 3^(p+1)=3^1 * 3^p


\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^(b+c)


\implies 3^(p+1)=3^(1+p)


\implies 3^(p+1)=3^(p+1)


\textsf{Apply exponent rule} \quad a^(f(x))=a^(g(x)) \implies f(x)=g(x):


\implies p+1=p+1

Subtract 1 from both sides:


\implies p+1-1=p+1-1


\implies p=p

Therefore as both sides are equal, true for all p.

User Greuze
by
4.1k points
5 votes

Answer:

Given equation:


  • (3^(p+1) - 3^p) /(2 *3^p) = 1

Solving for p:


  • 3^(p+1) - 3^p = 2 *3^p

  • 3*3^p - 3^p = 2 *3^p

  • 2 *3^p =2 *3^p

p - any real number

We can state the initial expression is correct for any value of p.

User Brian Peterson
by
5.0k points