Answer:
- f(x) = - (x - 2)(x - 5i)(x + 5i)
or
- f(x) = - x³ + 2x² - 25x + 50
Explanation:
Since n = 3, this is a degree 3 polynomial and has total of 3 zero's.
Two of zero's are given:
- 2 and 5i, the third one must be - 5i (conjugate of 5i).
So the function becomes:
- f(x) = a(x - 2)(x - 5i)(x + 5i)
We have f(-1) = 78, using this find the value of a:
- f(-1) = a(- 1 - 2)(-1 - 5i)(-1 + 5i) = a( - 3)(1 - 25i²) = -3a*26 = - 78a
- -78a = 78
- a = - 1
The function is:
- f(x) = - (x - 2)(x - 5i)(x + 5i) ⇒
- f(x) = -(x - 2)(x² + 25) ⇒
- f(x) = -(x³ - 2x² + 25x - 50) ⇒
- f(x) = - x³ + 2x² - 25x + 50