Answer:
![\displaystyle B. \ 3x^2 + (3)/(2)x - 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/9fvzqi2okgsryul9mwbe4febt546oy4lsh.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Terms/Coefficients
- Functions
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = (x)/(2) - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/y17fp69wz6bmvk5ojpxce1qunvcjmo1g98.png)
![\displaystyle g(x) = 3x^2 + x - 6](https://img.qammunity.org/2022/formulas/mathematics/high-school/db3mlndjxh41ejtq39fatud0le66ahhpgp.png)
Step 2: Find
- Substitute in functions:
![\displaystyle (f + g)(x) = (x)/(2) - 3 + 3x^2 + x - 6](https://img.qammunity.org/2022/formulas/mathematics/high-school/8housqgnoq1xsejd9nyalrs8i6rtmpz43t.png)
- Combine like terms:
![\displaystyle (f + g)(x) = 3x^2 + (3)/(2)x - 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/n8j7fteb3i4rt10e655c85v75ziksx6ova.png)