44.5k views
4 votes
Given 'n' is a positive integer and 'r' is a real number which r > 1

Given the sequence {a_n} corresponding to:

\displaystyle \large{a_1r + a_2 {r}^(2) + ... + a_n {r}^(n) = {( - 1)}^(n) }
Answer the following questions:
( 1 )
Write a1,a2,a3 in term of r.
( 2 )
When n ≥ 2, write a_n in term of r.
( 3 )
Evaluate the sum of Infinite Series a1+a2+...+an+...
Thanks in advance!​

2 Answers

3 votes

Answer:


good \: luck \: \\ \\ \\

Given 'n' is a positive integer and 'r' is a real number which r > 1 Given the-example-1
User Vinoth Anandan
by
4.8k points
2 votes

(1) If


a_1r+a_2r^2+a_3r^3+\cdots+a_nr^n = (-1)^n

then by this rule, we have


a_1r = (-1)^1 \implies a_1 = \boxed{-\frac1r}


a_1r+a_2r^2 = (-1)^2 \implies -1 + a_2r^2 = 1 \implies a_2 = \boxed{\frac2{r^2}}


a_1r+a_2r^2+a_3r^3 = (-1)^3 \implies -1 + 2 + a_3r^3 = -1 \implies a_3 = \boxed{-\frac2{r^3}}

(2) The next 3 terms in the sequence
\{a_n\} would be


\displaystyle \sum_(n=1)^4a_nr^n = 1 \implies -1 + 2 - 2 + a_4r^4 = 1 \implies a_4 = \frac2{r^4}


\displaystyle \sum_(n=1)^5a_nr^n = -1 \implies -1 + 2 - 2 + 2 + a_5r^5 = -1 \implies a_5 = -\frac2{r^5}


\displaystyle \sum_(n=1)^6a_nr^n = 1 \implies -1 + 2 - 2 + 2 - 2 + a_6r^6 = 1 \implies a_6 = \frac2{r^6}

The pattern should be clear; we have for n ≥ 2,


a_n = \boxed{(2(-1)^n)/(r^n)}

(3) We have


a_1+a_2+\cdots+a_n +\cdots = \displaystyle \lim_(n\to\infty)\sum_(k=1)^n a_k \\\\ = \lim_(n\to\infty)\left(-\frac1r + 2\sum_(k=2)^n((-1)^k)/(r^k)\right) \\\\ = -\frac1r + 2\sum_(k=2)^\infty \left(-\frac1r\right)^k

As long as |-1/r | < 1, or |r | > 1, the remaining geometric series converges to


\displaystyle \sum_(k=2)^\infty \left(-\frac1r\right)^k = \sum_(k=0)^\infty\left(-\frac1r\right)^k - 1 - \left(-\frac1r\right) = \frac1{1-\left(-\frac1r\right)}-1+\frac1r = \frac1{r(r+1)}

Then


a_1+a_2+\cdots+a_n = -\frac1r + \frac2{r(r+1)} = \boxed{(1-r)/(r(1+r))}

User Aditya Thakur
by
4.4k points