Answer:
The equation of a tangent line is y = 4x-7
Explanation:
We are given our quadratic function:-
![\displaystyle \large{f(x) = {x}^(2) - 3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/6hli1n2zrizvkltcnrtgleg5epwq2boibm.png)
Since we want to find a line that is tangent to the parabola, let's recall our basic differential.
Differential (Power/Exponent)
![\displaystyle \large{f(x) = a {x}^(n) \longrightarrow f'(x) = na {x}^(n - 1) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/f85szbfa0gvtmfdwwt522fki1y8vul0gga.png)
Differential (Constant)
![\displaystyle \large{f(x) = a \longrightarrow f'(x) = 0}](https://img.qammunity.org/2022/formulas/mathematics/high-school/w3n5uf25gh1xvpjpha98mlp47dp2bfame6.png)
For a = constant.
First, differentiate the function.
![\displaystyle \large{f(x) = {x}^(2) - 3} \\ \displaystyle \large{f'(x) = 2{x}^(2 - 1) - 0} \\ \displaystyle \large{f'(x) = 2x}](https://img.qammunity.org/2022/formulas/mathematics/high-school/pnjp9gzpwfvhxxv38xcb9ekxej2c7cjs04.png)
Then substitute x = 2 in f'(x) to find the slope at x = 2 for parabola.
![\displaystyle \large{f'(2)= 2(2)} \\ \displaystyle \large{f'(2)= 4}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vmzvl874cytfiff16x2ulby7ba1satokzk.png)
Therefore, slope at x = 2 is 4.
Form a point-slope equation:-
Point-Slope (Derivative)
![\displaystyle \large{f(x) - f(a) = f'(a)(x - a)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ify9jhh5qdngtu0fo4wubh9oaho3v8oq8v.png)
Let a = x = 2
To find f(a), substitute x = a = 2 in x^2-3.
![\displaystyle \large{f(2) = {2}^(2) - 3} \\ \displaystyle \large{f(2) = 4- 3} \\ \displaystyle \large{f(2) = 1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/bnmmsbq5kcnpqotiqeah6a96pj33m6knbv.png)
Therefore our f(a) is 1.
We know:-
Therefore the tangent equation is:-
![\displaystyle \large{f(x) - 1 = 4(x - 2)} \\ \displaystyle \large{f(x) = 4(x - 2) + 1} \\ \displaystyle \large{f(x) = 4x - 8 + 1} \\ \displaystyle \large{f(x) = 4x - 7}](https://img.qammunity.org/2022/formulas/mathematics/high-school/yz20lbicmx0ec5rgmlr8mpfbv57p0z9xzh.png)