510 views
34 votes
34 votes
The image above shows two congruent triangles. What is the measure of angle y?

The image above shows two congruent triangles. What is the measure of angle y?-example-1
User Minustar
by
2.5k points

2 Answers

25 votes
25 votes

Answer:

20 degree

Explanation:

angle sum of triangle

180-112-48

User Sergioh Lonet
by
2.7k points
26 votes
26 votes

There are two ways , so the first part reference to method 1 and and second part reference to method 2.


\\

PART 1 :-


\\ \\


\tt In~\triangle ABC:


\\


\tt \angle A + \angle B + \angle C = 180 {}^( \circ)

{sum of triangle}


\\ \\

here we can find value of angle C.


\\


\dashrightarrow \sf\angle A + \angle B + \angle C = 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf112 + 48 + \angle C = 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf160 + \angle C = 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf\angle C = 180 {}^( \circ) - 160 {}^( \circ) \\


\\ \\


\dashrightarrow \sf\angle C =20^( \circ) \\


\\ \\

angle c is congruent to angle f

.°. y = 20°


\\ \\

PART 2:-


\\ \\

angle a = angle d

.°. value of x = 112°


\\ \\


\tt \angle E + \angle D + \angle F = 180 {}^( \circ)


\\ \\

ve can find value of y :-


\\


\dashrightarrow \sf x + 48 + y= 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf112 + 48 +y = 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf160+y= 180 {}^( \circ) \\


\\ \\


\dashrightarrow \sf y= 180 {}^( \circ) - 160 {}^( \circ) \\


\\ \\


\dashrightarrow \bf y=20^( \circ) \\

User Mauriciopastrana
by
2.6k points