137k views
1 vote
100 POINTS FOR THIS!!!

100 POINTS FOR THIS!!!-example-1

2 Answers

5 votes

Answer:

b

Explanation:

User Ashish Kadam
by
4.0k points
5 votes

Answer:

m∠EFD = 90°

m∠EHF = 127°

m∠HFG = 56°

m∠G = 71°

m∠E = 19°

Explanation:

From inspection of the given diagram, line segment GD is a straight line and m∠EFG= 90°.

Angles on a straight line sum to 180°:

⇒ m∠EFG + m∠EFD = 180°

⇒ 90° + m∠EFD = 180°

⇒ 90° + m∠EFD - 90° = 180° - 90°

⇒ m∠EFD = 90°

Angles on a straight line sum to 180°:

⇒ m∠EHF + m∠FHG = 180°

⇒ m∠EHF + 53° = 180°

⇒ m∠EHF + 53° - 53° = 180° - 53°

⇒ m∠EHF = 127°

From inspection of the given diagram, m∠EFH and m∠HFG form a right angle:

⇒ m∠EFH + m∠HFG = 90°

⇒ 34° + m∠HFG = 90°

⇒ 34° + m∠HFG - 34° = 90° - 34°

⇒ m∠HFG = 56°

Interior angles of a triangle sum to 180°:

⇒ m∠HFG + m∠GHF + m∠G = 180°

⇒ 56° + 53° + m∠G = 180°

⇒ 109° + m∠G = 180°

⇒ 109° + m∠G - 109° = 180° - 109°

⇒ m∠G = 71°

Interior angles of a triangle sum to 180°:

⇒ m∠E + m∠EFH + m∠EHF = 180°

⇒ m∠E + 34° + 127° = 180°

⇒ m∠E + 161° = 180°

⇒ m∠E + 161° - 161° = 180° - 161°

⇒ m∠E = 19°

User EzioMercer
by
4.9k points