137k views
1 vote
100 POINTS FOR THIS!!!

100 POINTS FOR THIS!!!-example-1

2 Answers

5 votes

Answer:

b

Explanation:

User Ashish Kadam
by
7.3k points
5 votes

Answer:

m∠EFD = 90°

m∠EHF = 127°

m∠HFG = 56°

m∠G = 71°

m∠E = 19°

Explanation:

From inspection of the given diagram, line segment GD is a straight line and m∠EFG= 90°.

Angles on a straight line sum to 180°:

⇒ m∠EFG + m∠EFD = 180°

⇒ 90° + m∠EFD = 180°

⇒ 90° + m∠EFD - 90° = 180° - 90°

⇒ m∠EFD = 90°

Angles on a straight line sum to 180°:

⇒ m∠EHF + m∠FHG = 180°

⇒ m∠EHF + 53° = 180°

⇒ m∠EHF + 53° - 53° = 180° - 53°

⇒ m∠EHF = 127°

From inspection of the given diagram, m∠EFH and m∠HFG form a right angle:

⇒ m∠EFH + m∠HFG = 90°

⇒ 34° + m∠HFG = 90°

⇒ 34° + m∠HFG - 34° = 90° - 34°

⇒ m∠HFG = 56°

Interior angles of a triangle sum to 180°:

⇒ m∠HFG + m∠GHF + m∠G = 180°

⇒ 56° + 53° + m∠G = 180°

⇒ 109° + m∠G = 180°

⇒ 109° + m∠G - 109° = 180° - 109°

⇒ m∠G = 71°

Interior angles of a triangle sum to 180°:

⇒ m∠E + m∠EFH + m∠EHF = 180°

⇒ m∠E + 34° + 127° = 180°

⇒ m∠E + 161° = 180°

⇒ m∠E + 161° - 161° = 180° - 161°

⇒ m∠E = 19°

User EzioMercer
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories