34.9k views
6 votes
Integrala x la a treia ori ln la a doua dx va rog

User Sungjin
by
4.0k points

1 Answer

1 vote

I don't speak Romanian, but the closest translation for this suggests you're trying to compute


\displaystyle \int x^3 \ln(x)^2 \, dx

Integrate by parts:


\displaystyle \int x^3 \ln(x)^2 \, dx = uv - \int v \, du

where

u = ln(x)² ⇒ du = 2 ln(x)/x dx

dv = x³ dx ⇒ v = 1/4 x⁴


\implies \displaystyle \int x^3 \ln(x)^2 \, dx = \frac14 x^4 \ln(x)^2 - \frac12 \int x^3 \ln(x) \, dx

Integrate by parts again:


\displaystyle \int x^3 \ln(x) \, dx = u'v' - \int v' du'

where

u' = ln(x) ⇒ du' = dx/x

dv' = x³ dx ⇒ v' = 1/4 x⁴


\implies \displaystyle \int x^3 \ln(x) \, dx = \frac14 x^4 \ln(x) - \frac14 \int x^3 \, dx

So, we have


\displaystyle \int x^3 \ln(x)^2 \, dx = \frac14 x^4 \ln(x)^2 - \frac12 \left(\frac14 x^4 \ln(x) - \frac14 \int x^3 \, dx \right)


\displaystyle \int x^3 \ln(x)^2 \, dx = \frac14 x^4 \ln(x)^2 - \frac18 x^4 \ln(x) + \frac18 \int x^3 \, dx


\displaystyle \int x^3 \ln(x)^2 \, dx = \frac14 x^4 \ln(x)^2 - \frac18 x^4 \ln(x) + \frac18 \left(\frac14 x^4\right) + C


\displaystyle \int x^3 \ln(x)^2 \, dx = \frac14 x^4 \ln(x)^2 - \frac18 x^4 \ln(x) + \frac1{32} x^4 + C


\boxed{\displaystyle \int x^3 \ln(x)^2 \, dx = \frac1{32} x^4 \left(8\ln(x)^2 - 4\ln(x) + 1\right) + C}

User Mdoyle
by
4.1k points