45.4k views
2 votes
Given that cot θ = 1/√5, what is the value of (sec²θ - cosec²θ)/(sec²θ + cosec²θ) ?

(a) 2/3
(b) 3/2
(c) 25/36
(d) 12/13​

Given that cot θ = 1/√5, what is the value of (sec²θ - cosec²θ)/(sec²θ + cosec²θ) ? (a-example-1
User Jokester
by
4.2k points

1 Answer

3 votes

Explanation:


\mathsf{Given :\;\frac{{sec}^2\theta - co{sec}^2\theta}{{sec}^2\theta + co{sec}^2\theta}}


\bigstar\;\;\textsf{We know that : \large\boxed{\mathsf{{sec}\theta = (1)/(cos\theta)}}}


\bigstar\;\;\textsf{We know that : \large\boxed{\mathsf{co{sec}\theta = (1)/(sin\theta)}}}


\mathsf{\implies ((1)/(cos^2\theta) - (1)/(sin^2\theta))/((1)/(cos^2\theta) + (1)/(sin^2\theta))}


\mathsf{\implies ((sin^2\theta - cos^2\theta)/(sin^2\theta.cos^2\theta))/((sin^2\theta + cos^2\theta)/(sin^2\theta.cos^2\theta))}


\mathsf{\implies (sin^2\theta - cos^2\theta)/(sin^2\theta + cos^2\theta)}

Taking sin²θ common in both numerator & denominator, We get :


\mathsf{\implies (sin^2\theta\left(1 - (cos^2\theta)/(sin^2\theta)\right))/(sin^2\theta\left(1 + (cos^2\theta)/(sin^2\theta)\right))}


\bigstar\;\;\textsf{We know that : \large\boxed{\mathsf{cot\theta = (cos\theta)/(sin\theta)}}}


\mathsf{\implies (1 -cot^2\theta)/(1 + cot^2\theta)}


\mathsf{Given :\;cot\theta = (1)/(√(5))}


\mathsf{\implies (1 - \left((1)/(√(5))\right)^2)/(1 + \left((1)/(√(5))\right)^2)}


\mathsf{\implies (1 - (1)/(5))/(1 + (1)/(5))}


\mathsf{\implies ((5 - 1)/(5))/((5 + 1)/(5))}


\mathsf{\implies (5 - 1)/(5 + 1)}


\mathsf{\implies (4)/(6)}


\mathsf{\implies (2)/(3)}

Hence, option (a) 2/3 is your correct answer.

User Wattholm
by
4.4k points