154k views
18 votes
Let f(x)=
\footnotesize \rm \lim_(n \to \infty ) \left \lgroup \frac{ {n}^n(x + n) \bigg( x + (n)/( 2) \bigg) \dots \bigg(x + (n)/(n) \bigg)}{n!( {x}^(2) + {n}^(2)) \bigg( {x}^(2) + \frac{ {n}^2 }{4} \bigg) \dots \bigg( {x}^(2) + \frac{ {n}^(2) }{ {n}^(2) } \bigg) } \right \rgroup^{ (x)/(n) } \\ , for all x > 0. Then


\rm(A) \: f \bigg( (1)/(2) \bigg ) \geq f(1)


\rm(B) \: f \bigg ( (1)/(3) \bigg) \leq f \bigg ( (2)/(3) \bigg)


\rm(C) \: f'(2) \leq0


\rm(D) \: (f'(3))/(f(3)) \geq (f'(2))/(f(2)) \\

1 Answer

8 votes

Use the old exp-log trick and properties of the logarithm to rewrite the limit as


\displaystyle \lim_(n\to\infty) \left((n^n \left(x+\frac n1\right) \left(x+\frac n2\right) \cdots \left(x+\frac nn\right))/(n! \left(x^2+\left(\frac n1\right)^2\right) \left(x^2+\left(\frac n2\right)^2\right) \cdots \left(x^2+\left(\frac nn\right)^2\right))\right)^(\frac xn)


\displaystyle = \exp\left[\lim_(n\to\infty) \frac xn \ln \left((n^n \left(x+\frac n1\right) \left(x+\frac n2\right) \cdots \left(x+\frac nn\right))/(n! \left(x^2+\left(\frac n1\right)^2\right) \left(x^2+\left(\frac n2\right)^2\right) \cdots \left(x^2+\left(\frac nn\right)^2\right))\right)\right]


\displaystyle = \exp\left[x \lim_(n\to\infty)\frac1n\ln\left((n^n)/(n!)\right) + \frac1n \sum_(k=1)^n \ln\left(x+\frac nk\right) - \frac1n \sum_(k=1)^n \ln\left(x^2+\left(\frac nk\right)^2\right)\right]


\displaystyle = \exp\left[x \lim_(n\to\infty)\frac1n\ln\left((n^n)/(n!)\right) + \frac1n \sum_(k=1)^n \ln\left(x+\frac1{k/n}\right) - \frac1n \sum_(k=1)^n \ln\left(x^2+\frac1{\left(k/n\right)^2}\right)\right]

The first limit converges to 0, since n! asymptotically behaves like nⁿ, so ln(nⁿ/n!) → ln(1) = 0.

The two remaining sums converge to definite integrals:


\displaystyle \lim_(n\to\infty) \frac1n \sum_(k=1)^n \ln\left(x + \frac1{\frac kn}\right) = \int_0^1 \ln\left(x + \frac1y\right) \, dy = \frac{(x+1) \ln(x+1)}x


\displaystyle \lim_(n\to\infty) \frac1n \sum_(k=1)^n \ln\left(x^2 + \left(\frac1{\frac kn}\right)^2\right) = \int_0^1 \ln\left(x^2 + \frac1{y^2}\right) \, dy = (2\tan^(-1)(\sqrt x))/(\sqrt x) + \ln(1+x)

It follows that


f(x) = \exp\left[x\left(0 + \frac{(x+1)\ln(x+1)}x - (2\tan^(-1)(\sqrt x))/(\sqrt x) - \ln(x+1)\right)\right]


f(x) = \exp\left[\ln(x+1) - 2\sqrt x \tan^(-1)(\sqrt x)\right]


f(x) = (x+1) e^{-2\sqrt x \tan^(-1)(\sqrt x)}

By computing f'(x) and f''(x), it's easy to show that f'(x) ≤ 0 and f''(x) ≥ 0 for all x > 0. So f(x) is decreasing and f'(x) is increasing, and

(A) f(1/2) ≥ f(1) is true

• (B) f(1/3) ≤ f(2/3) is false

(C) f'(2) ≤ 0 is true

(D) f'(3)/f(3) ≥ f'(2)/f(2) ⟺ f'(3)/f'(2) ≥ f(3)/f(2) ⟺ (something larger than 1) ≥ (something smaller than 1) is true

User Shubham Goyal
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories