130k views
2 votes
The media of the following data is 525. Find the value of x and y, if the total frequency is 100.

Class interval Frequency (fᵢ)
0 - 100 2
100 - 200 5
200 - 300 x
300 - 400 12
400 - 500 17
500 - 600 20
600 - 700 y
700 - 800 9
800 - 900 7
900 - 100 4


The media of the following data is 525. Find the value of x and y, if the total frequency-example-1

1 Answer

4 votes

Explanation:


\large\underline{\sf{Solution-}}

The frequency distribution table is as follow


\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}c\sf Class\: interval&\sf Frequency\: (f)&\sf \: cumulative \: frequency\\\frac{\qquad \qquad}{}&\frac{\qquad \qquad}{}\\\sf 0 - 100&\sf 2&\sf2\\\\\sf 100 - 200 &\sf 5&\sf7\\\\\sf 200-300 &\sf x&\sf7 + x\\\\\sf 300-400 &\sf 12&\sf19 + x\\\\\sf 400-500 &\sf 17&\sf36 + x\\\\\sf 500-600 &\sf 20&\sf56 + x\\\\\sf 600-700 &\sf y&\sf56 + x + y\\\\\sf 700 - 800&\sf 9&\sf65 + x + y\\\\\sf 800-900&\sf 7&\sf72 + x + y\\\\\sf 900-1000&\sf 4&\sf76 + x + y\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Given that,

  • Sum of all frequencies = 100

So,


\rm :\longmapsto\: \sum \: f \: = \: 100


\rm :\longmapsto\: 76 + x + y \: = \: 100


\rm :\longmapsto\: x + y \: = \: 100 - 76


\rm\implies \:\boxed{ \: \tt{ x + y = 24 \: }} - - - (1)

Further given that,

  • Median of the series, M = 525

We know, Median is evaluated by using the formula,


\rm :\longmapsto\:\boxed{ \sf Median, \: M= l + \Bigg \{h * ( \bigg( (N)/(2) - cf \bigg))/(f) \Bigg \}}

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

According to the given distribution table,

We have

  • Median class is 500 - 600

So, we have

  • l = 500,

  • h = 100,

  • f = 20,

  • cf = 36 + x

  • N = 100

By substituting all the given values in the formula,


\dashrightarrow\sf M= l + \Bigg \{h * ( \bigg( (N)/(2) - cf \bigg))/(f) \Bigg \}


\dashrightarrow\sf 525= 500 + \Bigg \{100 * ( \bigg( (100)/(2) - (36 + x) \bigg))/(20) \Bigg \}


\dashrightarrow\sf 525 - 500 = 5(50 - 36 - x)


\dashrightarrow\sf 25 = 5(14 - x)


\dashrightarrow\sf 5 =14 - x


\bf\implies \:x = 9

On substituting the value of x in equation (1), we get


\rm :\longmapsto\:9 + y = 24


\bf\implies \:y = 15

Hence,


\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\bf{x = 9} \\ \\ &\bf{y = 15} \end{cases}\end{gathered}\end{gathered}

User Sri Tirupathi Raju
by
3.7k points