153k views
2 votes
(b). Solve for x and verify the result: 5x + 3 = 4/3 (1+x)​

(b). Solve for x and verify the result: 5x + 3 = 4/3 (1+x)​-example-1

2 Answers

7 votes

Answer:


x = - (5)/(11) \\

Explanation:


5x + 3 = (4)/(3) (1 + x) \\ 5x + 3 = (4)/(3) + (4x)/(3) \\ 5x - (4x)/(3) = (4)/(3) - 3 \\ (3(5x) - 4x)/(3) = (4 - 3(3))/(3) \\ (15x - 4x)/(3) = (4 - 9)/(3) \\ (11x)/(3) = - (5)/(3) \\ 11x = - (5)/(3) * 3 \\ 11x = - 5 \\ x = - (5)/(11) \\

User Xinan
by
8.7k points
5 votes

Solution :


{\dashrightarrow\sf{5x + 3 = (4)/(3) \bigg(1 + x \bigg)}}


{\dashrightarrow\sf{3 \bigg(5x + 3 \bigg)= 4\bigg(1 + x \bigg)}}


{\dashrightarrow\sf{\bigg(5x * 3 + 3 * 3 \bigg)= \bigg(1 * 4 + x * 4 \bigg)}}


{\dashrightarrow\sf{\bigg(15x + 9 \bigg)= \bigg(4 + 4x\bigg)}}


{\dashrightarrow\sf{15x - 4x =4 - 9 }}


{\dashrightarrow\sf{11x =4 - 9 }}


{\dashrightarrow\sf{11x = - 5 }}


{\dashrightarrow\sf{x = - (5)/(11)}}


\bigstar{\underline{\boxed{\sf{\red{x = - (5)/(11)}}}}}

∴ The value of x is -5/11.


\begin{gathered}\end{gathered}

Verification :


{\dashrightarrow\sf{5x + 3 = (4)/(3) \bigg(1 + x \bigg)}}


{\dashrightarrow\sf{ \bigg(\left\{5 * - (5)/(11) \right\} + 3 \bigg)= (4)/(3) \bigg(1 + \left\{ - (5)/(10)\right\}\bigg)}}


{\dashrightarrow\sf{ \bigg(\left\{- (25)/(11) \right\} + 3 \bigg)= (4)/(3) \bigg(1 + \left\{ - (5)/(11)\right\}\bigg)}}


{\dashrightarrow\sf{ \bigg( ( - ( 25 )+ (3 * 11))/(11) \bigg)= (4)/(3) \bigg( ((1 * 11) - (5 * 1))/(11)\bigg)}}


{\dashrightarrow\sf{ \bigg( ( - 25+ 33)/(11) \bigg)= (4)/(3) \bigg( (11 - 5)/(11)\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= (4)/(3) \bigg( (6)/(11)\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= \bigg((4)/(3) * (6)/(11)\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= \bigg((4 * 6)/(3 * 11)\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= \bigg((24)/(33)\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= \bigg(\cancel{(24)/(33)}\bigg)}}


{\dashrightarrow\sf{ \bigg( (8)/(11) \bigg)= \bigg({(8)/(11)}\bigg)}}


\bigstar{\underline{\boxed{\sf{\red{LHS = RHS}}}}}

∴ Hence Verified !

User Richard Willis
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories