127k views
1 vote
Prove that √[(√3-√2)/(√3+√2)] = 0.318, where √3 = 1.732 and √2 = 1.414​

1 Answer

3 votes

Step-by-step explanation:


{\large{\underline{\underline{\bf{\purple{Question \: : - }}}}}}


{\underline{\underline{\sf{\red{Prove \: That :-}}}}}


\begin{gathered} \dashrightarrow{\sf{\sqrt{(√(3) - √(2))/(√(3) + √(2))} = 0.318}} \end{gathered}


\small{\underline{\underline{\sf{\red{Where :-}}}}}


\bf{\green{√(3)}} = 1.732


\bf{\green{√(2)}} = 1.414


\begin{gathered}\end{gathered}


\large{\underline{\underline{\bf{\purple{Solution \: : - }}}}}


\begin{gathered} \dashrightarrow{\sf{\sqrt{(√(3) - √(2))/(√(3) + √(2))} = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\red /ideontimes Here, we have provided that 3 = 1.732 and 2 = 1.414. So, we put the given values in equation.


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{\sqrt{(√(3) - √(2))/(√(3) + √(2))} = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{\sqrt{\frac{1.732 - 1.414}{{1.732 + 1.414}}} = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{\sqrt{(0.318)/(3.146)} = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{\sqrt{\cancel{(0.318)/(3.146)}} = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{ √(0.101) = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\sf{0.318 = 0.318}} \end{gathered}


\begin{gathered}\end{gathered}


\begin{gathered} \dashrightarrow{\underline{\underline{\sf{ \red{LHS = RHS }}}}} \end{gathered}


\begin{gathered}\end{gathered}


{\bigstar{\overline{\underline{\boxed{\textsf{\textbf{\green{Hence Proved !}}}}}}}}

User Diana Nassar
by
4.4k points