91.5k views
2 votes
Suppose a, b denotes of the quadratic polynomial x² + 20x - 2022 & c, d are roots of x² - 20x + 2022 then the value of ac(a - c) ad(a - d) + bc(b - c) + (b - d)

Choose the correct option
(a) 0
(b) 8000
(c) 8080
(d) 16000​

User Skyfishjy
by
7.2k points

1 Answer

7 votes

Correct Question :-


\sf\:a,b \: are \: the \: roots \: of \: {x}^(2) + 20x - 2020 = 0 \: and \: \\ \sf \: c,d \: are \: the \: roots \: of \: {x}^(2) - 20x + 2020 = 0 \: then \:


\sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d) =

(a) 0

(b) 8000

(c) 8080

(d) 16000


\large\underline{\sf{Solution-}}

Given that


\red{\rm :\longmapsto\:a,b \: are \: the \: roots \: of \: {x}^(2) + 20x - 2020 = 0}

We know


\boxed{\red{\sf Product\ of\ the\ zeroes=(Constant)/(coefficient\ of\ x^(2))}}


\rm \implies\:ab = ( - 2020)/(1) = - 2020

And


\boxed{\red{\sf Sum\ of\ the\ zeroes=(-coefficient\ of\ x)/(coefficient\ of\ x^(2))}}


\rm \implies\:a + b = - (20)/(1) = - 20

Also, given that


\red{\rm :\longmapsto\:c,d \: are \: the \: roots \: of \: {x}^(2) - 20x + 2020 = 0}


\rm \implies\:c + d = - (( - 20))/(1) = 20

and


\rm \implies\:cd = (2020)/(1) = 2020

Now, Consider


\sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d)


\sf \: = {ca}^(2) - {ac}^(2) + {da}^(2) - {ad}^(2) + {cb}^(2) - {bc}^(2) + {db}^(2) - {bd}^(2)


\sf \: = {a}^(2)(c + d) + {b}^(2)(c + d) - {c}^(2)(a + b) - {d}^(2)(a + b)


\sf \: = (c + d)( {a}^(2) + {b}^(2)) - (a + b)( {c}^(2) + {d}^(2))


\sf \: = 20( {a}^(2) + {b}^(2)) + 20( {c}^(2) + {d}^(2))


\sf \: = 20\bigg[ {a}^(2) + {b}^(2) + {c}^(2) + {d}^(2)\bigg]

We know,


\boxed{\tt{ { \alpha }^(2) + { \beta }^(2) = {( \alpha + \beta) }^(2) - 2 \alpha \beta \: }}

So, using this, we get


\sf \: = 20\bigg[ {(a + b)}^(2) - 2ab + {(c + d)}^(2) - 2cd\bigg]


\sf \: = 20\bigg[ {( - 20)}^(2) + 2(2020) + {(20)}^(2) - 2(2020)\bigg]


\sf \: = 20\bigg[ 400 + 400\bigg]


\sf \: = 20\bigg[ 800\bigg]


\sf \: = 16000

Hence,


\boxed{\tt{ \sf \: ac(a - c) + ad(a - d) + bc(b - c) + bd(b - d) = 16000}}

So, option (d) is correct.

User Monessah
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories