13.1k views
4 votes
Q). If

| 1 , 1, 3 |
A = | 5, 2, 6 |, then find A³
| -2, -1, -3 |​

Q). If | 1 , 1, 3 | A = | 5, 2, 6 |, then find A³ | -2, -1, -3 |​-example-1

2 Answers

6 votes

Answer:

A³ = [ 1, 1, 27, 125, 8, 216, -8, -1, -27].

Explanation:

All the numbers in the bracket should be cubed.

I hope you understood ♥️♥️♥️

User Robert Corvus
by
5.0k points
3 votes

Explanation:


\large\underline{\sf{Solution-}}

Given matrix is


\rm :\longmapsto\: \begin{gathered}\sf A=\left[\begin{array}{ccc}1&1&3\\5&2&6\\ - 2&-1& - 3\end{array}\right]\end{gathered}

Consider,


\red{\rm :\longmapsto\: {A}^(2)}


\rm \:  =  \: A * A


\\ \rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5&2&6\\ - 2&-1& - 3\end{array}\right]\end{gathered}\begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5&2&6\\ - 2&-1& - 3\end{array}\right]\end{gathered} \\


\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}1 + 5 - 6&1 + 2 - 3&3 + 6 - 9\\5 + 10 - 12&5 + 4 - 6&15 + 12 - 18\\ - 2 - 5 + 6&-2 - 2 + 3& - 6 - 6 + 9\end{array}\right]\end{gathered}


\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3&3&9\\ - 1&-1& - 3\end{array}\right]\end{gathered}


\\ \bf\implies \: {A}^(2) = \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3&3&9\\ - 1&-1& - 3\end{array}\right]\end{gathered} \\

Now, Consider


\red{\rm :\longmapsto\: {A}^(3)}


\rm \:  =  \: {A}^(2) * A


\\ \rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3&3&9\\ - 1&-1& - 3\end{array}\right]\end{gathered} * \begin{gathered}\sf \left[\begin{array}{ccc}1&1&3\\5&2&6\\ - 2&-1& - 3\end{array}\right]\end{gathered}


\\ \rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\3 + 15 - 18&3 + 6 - 9&9 + 18 - 27\\ - 1 - 5 + 6&-1 - 2 + 3& - 3 - 6 + 9\end{array}\right]\end{gathered} \\


\\ \rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0&0&0\\ 0&0&0\end{array}\right]\end{gathered}


\\ \bf\implies \: {A}^(3)   =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0&0&0\\ 0&0&0\end{array}\right]\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

Matrix multiplication is defined when number of columns of pre multiplier is equal to the number of rows of post multiplier.

Matrix multiplication may or may not be Commutative.

Matrix multiplication is Associative. i.e (AB)C = A(BC)

Matrix multiplication is Distributive. i.e. A ( B + C ) = AB + AC