Answer:
4y - 5x + 7 = 0
Explanation:
To get to the equation of its perpendicular, firstly we'll need the slope of this line.
![\boxed{ \mathfrak{slope = \red{ \mathsf{ (y_(2) - y _(1))/(x_(2) - x _(1)) }}}}](https://img.qammunity.org/2022/formulas/mathematics/college/ppgwabor2k0fusl41dur1eh08pz06eljch.png)
(x1, y1) and (x2, y2) are any two points kn the given line.
I caught two points that lie on this graph, and they are :
![\mathsf{ \implies \: slope = (y_(2) - y _(1))/(x_(2) - x _(1)) }](https://img.qammunity.org/2022/formulas/mathematics/college/anvbxg9i1wcl1w06yggjbyio7tek7lbh09.png)
![\mathsf{ \implies \: slope = ( - 6- 2)/(8 - ( - 2)) }](https://img.qammunity.org/2022/formulas/mathematics/college/ty94l3zzljohiurs16kgstjiryekpz6dbi.png)
![\mathsf{ \implies \: slope = ( -8)/(8 + 2) }](https://img.qammunity.org/2022/formulas/mathematics/college/fofmjauqds5b4hwhz5fv5pdcqlpz0e9qkj.png)
(two minus make a plus)
![\mathsf{ \implies \: slope = ( -8)/(10) }](https://img.qammunity.org/2022/formulas/mathematics/college/ntzer7ppm79ydaipfs3vvifpp7e8hs2ave.png)
![\mathsf{ \implies \: slope = \frac{ \cancel{-8} {}^( \: \: - 4) }{ \cancel{10} \: \: {}^(5) } }](https://img.qammunity.org/2022/formulas/mathematics/college/p5cw2uroy5eod0gpgh77hp7wu0ucgwbe48.png)
slope = -4 /5
That's the slope of the given line.
Now, the slope of the line perpendicular to this one will be equal to its negative reciprocal.
slope (perpendicular) = 5/ 4
and they've given a point that lies in the perpendicular, it is = (3, 2)
For equation of a line thru a point, we have:
![\boxed{ \mathsf{ \red {y} - {y}^(1) = slope * (\red{x} - {x}^(1) }) }](https://img.qammunity.org/2022/formulas/mathematics/college/zthratnhzc47tzh7n1l9sbhmwipou1kljv.png)
the letters in red are the variables that won't be changed thruout.
and (x¹, y¹) are the points on the line.
- (x¹, y¹) = (3, 2)
- slope = 5/ 4
![\implies \mathsf{y - 2 = (5)/(4) * (x - 3) }](https://img.qammunity.org/2022/formulas/mathematics/college/xq9b56ybf7f8am4octc6nw9ux0yoj77x4w.png)
![\implies \mathsf{(y - 2)4 = 5x - 15}](https://img.qammunity.org/2022/formulas/mathematics/college/mkqs26e0v43jlpzqqy9d0ciltyf3hqa0sm.png)
![\implies \mathsf{4y - 8 = 5x - 15}](https://img.qammunity.org/2022/formulas/mathematics/college/cnvtbtdnztqnl51wkqag8z8ppcf5rl3cek.png)
![\implies \mathsf{(4y - 5x) - 8 + 15 = 0}](https://img.qammunity.org/2022/formulas/mathematics/college/xrrjrz9ad1yyfxkfj4wzjws8eqgjz8rxnv.png)
![\implies \mathsf{4y - 5x + 7 = 0}](https://img.qammunity.org/2022/formulas/mathematics/college/jhli31v9p2blnd4otkwt8y6b4j8fuqcisy.png)
and thats the required equation of the perpendicular.