28.1k views
3 votes
Matrics Assisment
Q.1) If A = [3 0 ; 0 -3] and b = [7 2 ; 4 5] then find A + 2B​

Matrics Assisment Q.1) If A = [3 0 ; 0 -3] and b = [7 2 ; 4 5] then find A + 2B​-example-1

1 Answer

0 votes

Explanation:


\textsf{\large{\underline{Solution 1}:}}

Here:


\rm:\longmapsto A =\begin{bmatrix} 3&0\\ 0&-3\end{bmatrix}


\rm:\longmapsto B=\begin{bmatrix} 7&4\\ 2&5\end{bmatrix}

Therefore, the matrix A + 2B will be:


\rm=\begin{bmatrix} 3&0\\ 0&-3\end{bmatrix} + 2\begin{bmatrix} 7&4\\ 2&5\end{bmatrix}


\rm=\begin{bmatrix} 3&0\\ 0&-3\end{bmatrix} + \begin{bmatrix} 14&8\\ 4&10\end{bmatrix}


\rm= \begin{bmatrix} 17&8\\ 4&7\end{bmatrix}

Therefore:


\rm:\longmapsto A + 2 B=\begin{bmatrix} 17&8\\ 4&7\end{bmatrix}


\textsf{\large{\underline{Learn More}:}}

Matrix: A matrix is a rectangular arrangement of numbers in the form of horizontal and vertical lines.

Horizontal lines are called rows and vertical lines are called columns.

Order of Matrix: A matrix containing x rows and y column has order x × y and it has xy elements.

Different types of matrices:

Row Matrix: This type of matrices have only 1 row. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2&\rm 3\end{bmatrix}

Column Matrix: This type of matrices have only 1 column. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm1\\ \rm2\\ \rm3\end{bmatrix}

Square Matrix: In this type of matrix, number of rows and columns are equal. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 2\\ \rm 3&\rm 4\end{bmatrix}

Zero Matrix: It is a matrix with all elements present is zero. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 0&\rm 0\\ \rm 0&\rm 0\end{bmatrix}

Identity Matrix: In this type of matrix, diagonal element is 1 and remaining elements are zero. An Identity matrix is always a square matrix. Example:


\rm:\longmapsto A=\begin{bmatrix}\rm 1&\rm 0\\ \rm 0&\rm 1\end{bmatrix}

User Lovelace
by
5.7k points