83.3k views
4 votes
Rationalise the denominator of 1/(2√5 + √3)​

User Wloescher
by
4.4k points

1 Answer

5 votes

Answer:


\bf ➤ \underline{Solution-} \\


\sf \: \: \: (1)/( 2 √(5) + √(3) )

On rationalising,


\sf \implies(1)/( 2 √(5) + √(3) ) * (2 √(5) - √(3))/(2 √(5) - √(3))

Combine the fractions,


\sf \implies (1(2 √(5) - √(3)))/((2 √(5) + √(3))(2 √(5) - √(3)))

We know that,


\sf \implies (a + b)(a - b) = (a)^(2) - (b)^(2)

So,


\sf \implies (1(2 √(5) - √(3)))/((2 √(5) )^(2) - (√(3))^(2) )


\sf \implies (1(2 √(5) - √(3)))/(20 - 3 )


\sf \implies (1(2 √(5) - √(3)))/(17 )


\sf \implies (2 √(5) - √(3))/(17 )

Hence,

On rationalising we got,


\bf \implies(2 √(5) - √(3))/(17 )