If the sequence is quadratic, then the n-th term (n ≥ 1) is

We're given the first four terms,

Using the formula for the n-th term, this turns into a system of equations,

Solve the system:
• Eliminate c :
(4a + 2b + c) - (a + b + c) = 1 - (-4) ===> 3a + b = 5
(9a + 3b + c) - (a + b + c) = 12 - (-4) ===> 8a + 2b = 16
• Multiply the second equation by 1/2 to get 4a + b = 8, then eliminate b and solve for a :
(4a + b) - (3a + b) = 8 - 5 ===> a = 3
• Solve for b and c :
3a + b = 9 + b = 5 ===> b = -4
a + b + c = 3 - 4 + c = -4 ===> c = -3
Then the rule for the n-th term is
