171k views
5 votes
Find f'(7), the derivative of f(x)= Square root x + 2 at X=7, using the LIMIT definition.

1 Answer

1 vote

Answer:

1/6

Explanation:

Derivative Limit Def.


\displaystyle \large{ f'(x) = \lim_(h \to 0) (f(x + h) - f(x))/(h) }

We are given the function;


\displaystyle \large{f(x) = √(x + 2) }

Therefore:


\displaystyle \large{f(x + h) = √(x + h + 2) }

Substitute x = 7, f(x) and f(x+h) in.


\displaystyle \large{ f'(x) = \lim_(h \to 0) ( √(x + h + 2) - √(x + 2) )/(h) } \\ \displaystyle \large{f'(7) = \lim_(h \to 0) ( √(7 + h + 2) - √(7 + 2) )/(h) } \\ \displaystyle \large{ \lim_(h \to 0) ( √(9 + h ) - √(9) )/(h) } \\ \displaystyle \large{ \lim_(h \to 0) ( √(9 + h ) - 3 )/(h) } \\

Multiply both numerator and denominator by √(9+h)+3


\displaystyle \large{ \lim_(h \to 0) ( (√(9 + h ) - 3)( √(9 + h) + 3) )/(h( √(9 + h) + 3)) } \\ \displaystyle \large{ \lim_(h \to 0) ( 9 + h - 9)/(h( √(9 + h) + 3)) } \\ \displaystyle \large{ \lim_(h \to 0) ( h)/(h( √(9 + h) + 3)) } \\ \displaystyle \large{ \lim_(h \to 0) ( 1)/( √(9 + h) + 3) } \\

Substitute h= 0 in.


\displaystyle \large{ \lim_(h \to 0) ( 1)/( √(9 + 0) + 3) } \\ \displaystyle \large{ \lim_(h \to 0) ( 1)/( √(9) + 3) } \\ \displaystyle \large{ \lim_(h \to 0) ( 1)/( 3+ 3) } \\ \displaystyle \large{ \lim_(h \to 0) ( 1)/( 6) }\\ \displaystyle \large \boxed{ (1)/(6) }

User Terminat
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories