204k views
2 votes
What does 4^8/4^-2 equal?

1 Answer

5 votes

Answer:

4^10 (base 4)

2^20 (base 2)

Explanation:

Law of Exponent:


\displaystyle \large{ \frac{ {a}^(m) }{ {a}^(n) } = {a}^(m - n) }

Compare:


\displaystyle \large{ \frac{ {a}^(m) }{ {a}^(n) } = \frac{ {4}^(8) }{ {4}^( - 2) } }

  • a = 4
  • m = 8
  • n = -2

Therefore:


\displaystyle \large{ \frac{ {4}^(8) }{ {4}^( - 2) } = {4}^(8 - ( - 2)) } \\ \displaystyle \large{ \frac{ {4}^(8) }{ {4}^( - 2) } = {4}^(8 + 2) } \\ \displaystyle \large{ \frac{ {4}^(8) }{ {4}^( - 2) } = {4}^(10) }

Althought you didn't specific if I should leave answer as base 4 or base 2.

If you want the answer in base 2.

From:


\displaystyle \large{ {4}^(10) = { ({2}^(2)) }^(10) }

Law of Exponent II


\displaystyle \large{ { ({a}^(m) )}^(n) = {a}^(m * n) }

Apply the law:


\displaystyle \large{ {4}^(10) = { ({2}^(2)) }^(10) } \\ \displaystyle \large{ {4}^(10) = {2}^(20) }

Thus, in base 2 form, it's 2^20

User Jon Winstanley
by
5.0k points