Answer:
D = 0; one real root
Explanation:
Discriminant Formula:
![\displaystyle \large{D = {b}^(2) - 4ac}](https://img.qammunity.org/2022/formulas/mathematics/high-school/765t9f0drcnotvq117vczc9xoaum66f6bx.png)
First, arrange the expression or equation in ax^2+bx+c = 0.
![\displaystyle \large{ {x}^(2) + 6x = - 9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zhjga9qw0n368ip5m6jhsfzpq4w7o7lp7b.png)
Add both sides by 9.
![\displaystyle \large{ {x}^(2) + 6x + 9 = - 9 + 9} \\ \displaystyle \large{ {x}^(2) + 6x + 9 = 0}](https://img.qammunity.org/2022/formulas/mathematics/high-school/44y2l8rb7ni6waezhe5zoaxnfnh9tpp3jb.png)
Compare the coefficients so we can substitute in the formula.
![\displaystyle \large{a {x}^(2) + bx + c = {x}^(2) + 6x + 9 }](https://img.qammunity.org/2022/formulas/mathematics/high-school/vixo1eoet4f70fq4a38e3oei63d26plpze.png)
Substitute a = 1, b = 6 and c = 9 in the formula.
![\displaystyle \large{D = {6}^(2) - 4(1)(9)} \\ \displaystyle \large{D = 36 - 36} \\ \displaystyle \large{D = 0}](https://img.qammunity.org/2022/formulas/mathematics/high-school/e5teylz5n3ock0i91qo0dpmu6sgiihchto.png)
Since D = 0, the type of solution is one real root.