Given that
![7x^5 - 6xy + 6y^2 = 272](https://img.qammunity.org/2022/formulas/mathematics/college/2rwxo8ej9ssrjkqvsnivgepzscts4sfkr0.png)
differentiating both sides with respect to x (using the power, product, and chain rules) yields
![35x^4 - 6x(\mathrm dy)/(\mathrm dx) - 6y + 12y(\mathrm dy)/(\mathrm dx) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/bka7ecv4d1tspc5w495sjhx5v5rt52wv75.png)
Solving for dy/dx gives
![(\mathrm dy)/(\mathrm dx) = (6y-35x^4)/(12y-6x)](https://img.qammunity.org/2022/formulas/mathematics/college/n9tja3moatp46oa7i7akh6lkbfpz4q5cfv.png)
This gives the slope of the tangent line to the curve at any point (x, y). In particular, the slope of the tangent to (2, 4) is
![(\mathrm dy)/(\mathrm dx)(2,4) = (6\cdot4-35\cdot2^4)/(12\cdot4-6\cdot2) = \boxed{-\frac{134}9}](https://img.qammunity.org/2022/formulas/mathematics/college/3u025cisbobf3yg74dvsmucn0z21wc7dk9.png)