318,920 views
30 votes
30 votes
Write a sine function that has a midline of 5, an amplitude of 3 and a period of 5/4

User Santana
by
2.5k points

1 Answer

21 votes
21 votes

Answer:


\displaystyle y = 3sin\:1(3)/(5)\pi{x} + 5

Explanation:


\displaystyle \boxed{y = 3cos\:(1(3)/(5)\pi{x} - (\pi)/(2)) + 5} \\ \\ y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 5 \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \hookrightarrow \boxed{(5)/(16)} \hookrightarrow ((\pi)/(2))/(1(3)/(5)\pi) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \hookrightarrow \boxed{1(1)/(4)} \hookrightarrow (2)/(1(3)/(5)\pi)\pi \\ Amplitude \hookrightarrow 3

OR


\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \hookrightarrow \boxed{1(1)/(4)} \hookrightarrow (2)/(1(3)/(5)\pi)\pi \\ Amplitude \hookrightarrow 3

From the above information, you should now have an ideya of how to interpret trigonometric equations like this.

I am delighted to assist you at any time.

User Jamin Grey
by
2.7k points