1.9k views
3 votes
The inverse of the function
f(x)=(x+1)^2+2 if x ≥ 0 is

User Seul
by
7.3k points

1 Answer

2 votes

If
f^(-1)(x) is the inverse of
f(x), then


f\left(f^(-1)(x)\right) = x

We're given a domain for
f(x) of
x\ge0, so
f\left(f^(-1)(x)\right) = x is valid only for
f^(-1)(x)\ge0.

Now,


f\left(f^(-1)(x)\right) = \left(f^(-1)(x) + 1\right)^2 + 2 = x

Solve for the inverse :


\left(f^(-1)(x) + 1\right)^2 = x - 2 \\\\ \sqrt{\left(f^(-1)(x)+1\right)^2} = √(x-2) \\\\ \left|f^(-1)(x) + 1\right| = √(x-2)

Since
f^(-1)(x)\ge0 \implies f^(-1)(x)+1 \ge0, by definition of absolute value we have


\left|f^(-1)(x)+1\right| = f^(-1)(x) + 1

Then we end up with


f^(-1)(x) + 1 = √(x-2) \\\\ \boxed{f^(-1)(x) = √(x-2)-1}

User Grahamrhay
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories