1.9k views
3 votes
The inverse of the function
f(x)=(x+1)^2+2 if x ≥ 0 is

User Seul
by
3.9k points

1 Answer

2 votes

If
f^(-1)(x) is the inverse of
f(x), then


f\left(f^(-1)(x)\right) = x

We're given a domain for
f(x) of
x\ge0, so
f\left(f^(-1)(x)\right) = x is valid only for
f^(-1)(x)\ge0.

Now,


f\left(f^(-1)(x)\right) = \left(f^(-1)(x) + 1\right)^2 + 2 = x

Solve for the inverse :


\left(f^(-1)(x) + 1\right)^2 = x - 2 \\\\ \sqrt{\left(f^(-1)(x)+1\right)^2} = √(x-2) \\\\ \left|f^(-1)(x) + 1\right| = √(x-2)

Since
f^(-1)(x)\ge0 \implies f^(-1)(x)+1 \ge0, by definition of absolute value we have


\left|f^(-1)(x)+1\right| = f^(-1)(x) + 1

Then we end up with


f^(-1)(x) + 1 = √(x-2) \\\\ \boxed{f^(-1)(x) = √(x-2)-1}

User Grahamrhay
by
4.4k points