46.6k views
21 votes
Write a sine function that has a midline of 5, an amplitude of 3 and a period of 5/4

User Eschibli
by
8.3k points

1 Answer

3 votes

Answer:


\displaystyle y = 3sin\:1(3)/(5)\pi{x} + 5

Explanation:


\displaystyle \boxed{y = 3cos\:(1(3)/(5)\pi{x} - (\pi)/(2)) + 5} \\ \\ y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 5 \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \hookrightarrow \boxed{(5)/(16)} \hookrightarrow ((\pi)/(2))/(1(3)/(5)\pi) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \hookrightarrow \boxed{1(1)/(4)} \hookrightarrow (2)/(1(3)/(5)\pi)\pi \\ Amplitude \hookrightarrow 3

OR


\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow (C)/(B) \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow (2)/(B)\pi \hookrightarrow \boxed{1(1)/(4)} \hookrightarrow (2)/(1(3)/(5)\pi)\pi \\ Amplitude \hookrightarrow 3

From the above information, you should now have an ideya of how to interpret trigonometric equations like this.

I am delighted to assist you at any time.

User Martin Suchanek
by
7.8k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories