91.2k views
1 vote
Please complete the details of your answer

please help me please​

Please complete the details of your answer please help me please​-example-1
User MrKurt
by
8.4k points

1 Answer

3 votes


\huge \boxed{\mathbb{QUESTION} \downarrow}

  • Solve the following word problems.


\large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}

Question 1

➜ Area of the lot = 2x² + 7x + 3 cm²

➜ Width of the garden = 2x + 1 cm.

➜ Length of the garden = y

﹋﹋﹋﹋﹋

✪ Area of a rectangle = length × width

⇒ length = area ÷ width

⇒ y = 2x² + 7x + 3 ÷ 2x + 1

﹋﹋﹋﹋﹋

WORKING


\tt \: y = \frac{ {2x}^(2) + 7x + 3}{2x + 1} \\ \\ \sf \: Factorise \: {2x}^(2) + 7x + 3. \\ \\ \tt \: y = (\left(x+3\right)\left(2x+1\right))/(2x+1) \\ \\ \sf \: Cancel \: out \:( 2x + 1 )\\ \\ \large\boxed{\boxed{\bf y = x+3 }}

✯ Length of the garden = x + 3 cm.

▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨

Question 2

➜ Area of the frame = 4x² - 4xy + y² cm²

➜ Length of the side of the frame = s

﹋﹋﹋﹋﹋

✪ Area of a square = side²

⇒ 4x² - 4xy + y² = s²

﹋﹋﹋﹋﹋

WORKING


\tt {4x}^(2) - 4xy + {y}^(2) = {s}^(2) \\ \\ \sf \: Use \: the \: algebraic \: identity \downarrow \: \\ \sf {a}^(2) - 2ab + {b}^(2) = (a - b) ^(2) ... \\ \sf \: a = 2x \: and \: b = y \\ \\ \tt \left(2x-y\right)^(2) = {s}^(2) \\ \\ \sf \: Squaring \: on \: both \: the \: sides \\ \\ \tt \sqrt{(2x - y) ^(2) } = \sqrt{ {(s)}^(2) } \\ \large\boxed{\boxed{\bf \: (2x - y) = s}}

✯ Length of the side of the frame = 2x - y cm.

▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨

Question 3 ↴

➜ Length of the rectangle = x + 5 cm

➜ Width of the garden = x + 3 cm.

➜ Area of the garden = a

﹋﹋﹋﹋﹋

✪ Area of a rectangle = length × width

⇒ a = (x + 5) × (x + 3)

﹋﹋﹋﹋﹋

WORKING


\tt \: a = (x + 5) * (x + 3) \\ \\ \sf \: multiply \: (x + 5) \: with \: (x + 3) \\ \\ \tt \: a = (x + 5) * (x + 3) \\ \tt \: a = x(x + 3) + 5(x + 3) \\ \tt \: a = {x}^(2) + 3x + 5x + 3 \\ \large \boxed{\boxed{ \bf \: a = {x}^(2) + 8x + 3}}

✯ Area of the rectangle = + 8x + 3 cm².

▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨

Question 4 ↴

➜ Length of the side of a square = x + 6 cm

➜ Area of the square = a

﹋﹋﹋﹋﹋

✪ Area of a square = side × side

⇒ Area of a square = side²

⇒ a = (x + 6)²

﹋﹋﹋﹋﹋

WORKING


\tt \: a = (x + 6) ^(2) \\ \\ \sf \: Use \: the \: algebraic \: identity \downarrow \: \\ \sf (a + b) ^(2) = {a}^(2) + 2ab + {b}^(2) ... \\ \sf \: a = x \: and \: b = 6 \\ \\ \tt \: a = (x + 6) ^(2) \\ \tt \: a = {x}^(2) + 2 * x * 6 + {6}^(2) \\ \large \boxed{\boxed{ \bf \: a = {x}^(2) + 12x + 36}}

✯ Area of the square = x² + 12x + 36 cm².

▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨▧▨

User Hitesh Agarwal
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories