x + y = y + x … … … True, since addition is commutative.
(x • y) • z = x • (y • z) … … … True, since multiplication is associative.
x - y = y - x … … … False. Suppose y = 0. Then the claim is x = -x, which is only true if x = 0.
(x + y) + z = x + (y + z) … … … True, since addition is associative.
(x - y) - z = x - (y - z) … … … False. If x = y = 0, then the claim is -z = z, which only holds for z = 0.