186k views
4 votes

\large \tt \: { x }^( 2 ) +  x \right^( 2 ) = 1

Solve for y. Attach a graph too.
Note :- The graph will come in the shape of a heart.

Only solve if you know it!​​

User Alqin
by
8.4k points

1 Answer

2 votes


\huge \boxed{\mathbb{QUESTION} \downarrow}


  • \large \tt \: { x }^( 2 ) +  ) \right) ^( 2 ) = 1


\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}


{ x }^( 2 ) +  \left( y- √( \left^( 2 ) = 1

Subtract x² from both sides of the equation.


\left(y-√(|x|)\right)^(2)+x^(2)-x^(2)=1-x^(2)

Subtracting x² from itself leaves 0.


\left(y-√(|x|)\right)^(2)=1-x^(2)

Take the square root of both sides of the equation.


y-√(|x|)=\sqrt{1-x^(2)} \\ y-√(|x|)=-\sqrt{1-x^(2)}

Subtract − √∣x∣ from both sides of the equation.


y-√(|x|)-\left(-√(|x|)\right)=\sqrt{1-x^(2)}-\left(-√(|x|)\right) \\ y-√(|x|)-\left(-√(|x| ) \right)=-\sqrt{1-x^(2)}-\left(-√(|x|)\right)

Subtracting − √∣x∣ from itself leaves 0.


y=\sqrt{1-x^(2)}-\left(-√(|x|)\right) \\ y=-\sqrt{1-x^(2)}-\left(-√(|x|)\right)

Subtract − √∣x∣from √1- x².


\underline{\underline{ \sf \: y=\sqrt{1-x^(2)}+√(|x|) }}

Subtract − √∣x∣from - √1- x².


\underline{\underline{ \sf \: y= - \sqrt{1-x^(2)}+√(|x|) }}

The equation is now solved.


\large \boxed{ \boxed{ \bf \: y=\sqrt{1-x^(2)}+√(|x|) }}\\ \\ \large\boxed {\boxed{ \bf \: y=-\sqrt{1-x^(2)}+√(|x|) }}

_________________________________

  • Refer to the attached image for the graph.

\large \tt \: { x }^( 2 ) +  \left( y- √( \left^( 2 ) = 1 Solve for y. Attach a graph-example-1
User Frank Drebin
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories