![\huge \boxed{\mathbb{QUESTION} \downarrow}](https://img.qammunity.org/2022/formulas/history/college/1jyfph24cxomkgaamjtwx4vsi2y95urtq7.png)
- Find the length of side a.
![\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}](https://img.qammunity.org/2022/formulas/business/college/6rihqyi13zmt3iigtmkd6hstdpaj7k3civ.png)
Okay, so to solve these type of questions we need to use the pythagoras property, which is ⇨ Hypotenuse² = Base² + Altitude².
Here,
- Hypotenuse (the longest side) = 5
- Altitude (height) = 4
- Base (the bottom line) = a
So, we have to find the base of the triangle .
﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋
Hypotenuse² = Base² + Altitude²
(5)² = (a)² + (4)²
25 = a² + 16
25 - 16 = a²
9 = a²
√9 = a
3 = a
﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋
- The length of side a is A. 3
﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋﹋
NOTE :-
![\downarrow](https://img.qammunity.org/2022/formulas/mathematics/high-school/f8k79i2uji8xhj9ccufw5yra097pvhtsuf.png)
![\downarrow](https://img.qammunity.org/2022/formulas/mathematics/high-school/f8k79i2uji8xhj9ccufw5yra097pvhtsuf.png)
- We used the pythagoras property to solve this question because the given triangle is a right angled triangle.
- Note that the pythagoras property only works in the case of right angled triangles.