89.0k views
5 votes
II. Characterize the rootts of the following quadratic equations using the discriminant. Use the example below.

Example: 2x² + 8x+6=0
a = 2 b= 8 c= 6
b²-4ac (8²) -4(2)6)
=64-48
= 16 (greater than zero) - roots are real and unequal.
Given: x2-16x + 64 = 0
Given: 3x2 + 6x + 4 = 0
Given: 2x2 - 10x + 6 = 0​

User Calebmer
by
7.5k points

2 Answers

6 votes

Answer:

3x2 + 6x + 4 = 0

Explanation:

User Leydi
by
8.5k points
2 votes

Answer:

Explanation:

Note: x2-16x + 64 = 0 should be written x^2 - 16x + 64 = 0. The coefficients are a = 1, b = -16 and c = 64. The discriminant, b^2 - 4ac, is (-16)^2 - 4(1)(64) = 0. A zero discriminant indicates that there are two equal, real roots.

Note: 3x2 + 6x + 4 = 0 => 3x^2 + 6x + 4. The coefficients a, b and c are {3, 6, 4} and so the discriminant is b^2 - 4ac, or 36 - 48, or -12. A negative discriminant indicates that there are two complex, unequal roots.

Note: 2x2 - 10x + 6 = 0 => x^2 - 5x + 3, whose coefficients are {1, -5, 3}. The discriminant is (-5)^2 - 4(1)(3) = 13. A positive discriminant indicates that there are two unequal, real roots.

User Eric Amorde
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories