Answer:
![\huge\boxed{ \bf\:1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/16i1z8qkftf8d2romaqwv1zzfhh5g2a3ws.png)
Explanation:
The key element to solve this question is to know the trignometric values of the given angles.
cosec θ, sec θ & cot θ are the reciprocals of sin θ, cos θ & tan θ respectively.
Please refer to the attachment for the trignometric values of 30°, 45° & 60° angles as they are used in the given question.
![\rule{150}{2}](https://img.qammunity.org/2022/formulas/english/high-school/lbk34z44lbnll09efeul9dkf0uou7m5lp2.png)
Now, let's solve this question.
First, let's write the values of the given trignometric degrees.
![\star\sec^(2)(60) = 2^(2)= 4\\ \star\tan^(2)(60) = (√(3) )^(2) = 3\\\star\sin^(2)(30) = ((1)/(2) )^(2) = (1)/(4) \\\star\cos^(2)(30) =( (√(3) )/(2) )^(2) = (3)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/isvqkys391pcukqwc60tiolt7l157yuvkr.png)
Now, let's solve the given question by substituting the above values & then simplifying by doing the necessary arithmetic operations.
![\sf\:(\sec^(2)(60) - \tan^(2)(60))/(\sin^(2)(30)+\cos^(2)(30))\\\sf\:= 4-3 \: / (1)/(4) + (3)/(4) \\\sf\:= 1 / (4)/(4) \\\sf\:= (1)/(1) * (4)/(4) (reciprocal) \\\sf\:= (4)/(4) \\=\boxed{ \bf\:1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/1qspemb3smg8eit7gyedllxqwvxtcgk35n.png)
![\rule{150}{2}](https://img.qammunity.org/2022/formulas/english/high-school/lbk34z44lbnll09efeul9dkf0uou7m5lp2.png)