124k views
2 votes
Derivative calculus


f(x) = \frac{x {}^(2) + 10x + 25}{x {}^(2) - 25 }
Im begging you guys ​

1 Answer

1 vote

Answer:


\mathsf{ \blue{ f'(x) = \frac{ - 10}{ {(x - 5)}^(2) } } }

Explanation:


\mathsf{f(x) = \frac{ {x}^(2) + 10x + 25}{ {x}^(2) - 25} }

the above expression can be reduced to simpler terms

  • x² - 25 = (x + 5)(x - 5)
  • x² + 10x + 25 = (x + 5)²


\mathsf{\implies f(x) = \frac{ {(x + 5)}^(2) }{(x + 5)(x - 5)} }

(x + 5)² can be written as (x + 5)(x + 5)


\mathsf{\implies f(x) = \frac{ \cancel{(x + 5)}(x + 5)}{\cancel{(x + 5)}(x - 5)} }


\mathsf{\implies f(x) = (x + 5)/(x - 5) }

Derivative of a fraction
\mathsf{(u)/(v)} is


  • \boxed { \red {\mathsf{ (v((du)/(dx)) \: - \: u((dv)/(dx)))/(v^2)} }}


\mathsf{\implies f'(x) = \frac{(x - 5) - (x + 5)}{(x - 5) {}^(2) } }


\mathsf{\implies f '(x) = \frac{x - 5 - x - 5}{ {(x - 5)}^(2) } }


\mathsf{\implies f'(x) = \frac{ - 10}{ {(x - 5)}^(2) } }

User Zalykr
by
5.4k points