461,454 views
26 votes
26 votes
(11^2x × 11^1 - 6 × 121^x )÷ (5 × 121^x)​

User Lars Fosdal
by
3.3k points

2 Answers

20 votes
20 votes

Answer:


(1331x-6* \:121^x)/(5* \:121^x)

Explanation:


(11^2x* \:11^1-6* \:121^x)/(5* \:121^x)


\mathrm{Apply\:exponent\:rule}:\quad \:a^b* \:a^c=a^(b+c)


11^2* \:11^1=11^(2+1)


=(11^(2+1)x-6* \:121^x)/(5* \:121^x)


\mathrm{Add\:the\:numbers:}\:2+1=3


=(11^3x-6* \:121^x)/(5* \:121^x)


11^3=1331


=(1331x-6* \:121^x)/(5* \:121^x)

[RevyBreeze]

User Shivanka
by
2.9k points
15 votes
15 votes

Answer:

1

Explanation:


(11^(2x) * 11^1 - 6 * 121^x)/(5 * 121^x) =


= (11 * 11^(2x) - 6 * 11^(2x))/(5 * 11^(2x))


= (5 * 11^(2x))/(5 * 11^(2x))


= 1

User Radmation
by
2.8k points