46.9k views
2 votes
For the function f: R ->R,f(x) = 7 -
x^(2) , find:
f' (-1).Show all working

User Sudhir N
by
5.4k points

1 Answer

3 votes

Answer:


f'(-1) = \pm 2√(2)

Explanation:

For
f: \mathbb{R} \rightarrow \mathbb{R} such that
f(x) = 7-x^2, find
f'(-1)

Recall that


f'(y)=x \text{ whenever } f(x) = y, \forall y \in \mathbb{R}

Therefore,


f(x) = 7-x^2 \implies y = 7-x^2 \implies x = 7-y^2 \implies y = \pm √( 7-x)


\therefore f'(x) = \pm √( 7-x)


f'(-1) = \pm √( 7-(-1)) = \pm √(8) = \pm √(2^3 ) = \pm 2√(2)

User Scooterlord
by
5.0k points