139k views
5 votes
Solve. (3x-4)^2-1=24

2 Answers

4 votes

Answer:


x_(1) = - (1)/(3) \: \: . \: \: x_(2) = 3

Explanation:


(3x - 4 {)}^(2) - 1 = 24 \\ 9 {x}^(2) - 24x + 16 - 1 = 24 \\ 9 {x}^(2) - 24x + 15 = 24 \\ 9 {x}^(2) - 24x + 15 - 24 = 0 \\ 9 {x}^(2) - 24x - 9 = 0 \\ 3 {x}^(2) - 8x - 3 = 0 \\ x = \frac{ - ( - 8) \pm \sqrt{( - 8 {)}^(2) - 4 * 3 * ( - 3) } }{2 * 3} \\ x = (8 \pm √(64 + 36) )/(6) \\ x = (8 \pm √(100) )/(6) \\ x = (8 \pm 10)/(6) \\


{\boxed{Answer:{\boxed{\green{x_(1) = - (1)/(3) \: \: x_(2) = 3}}}}}

User ThunderousNinja
by
8.0k points
5 votes

Answer:


\dashrightarrow \: { \tt{ {(3x - 4)}^(2) - 1 = 24 }} \\ \\ { \tt{ {(3x - 4)}^(2) = 24 + 1}} \\ \\ { \tt{ {(3x - 4)}^(2) = 25 }} \\ \\ { \tt{ {(3x - 4)}^(2) = {5}^(2) }}

• take a square root on either sides:


{ \tt{ \sqrt{ {(3x - 4)}^(2) } = \sqrt{ {5}^(2) } }} \\ \\ { \tt{3x - 4 = ±5}} \\ \\ { \tt{3x =± 5 + 4}} \\ \\ { \tt{3x = 9}}

and: 3x = -1

• divide either sides by 3:


\dashrightarrow \: { \boxed{ \boxed{ \tt{ \: \: x = 3 \: and\:-⅓ }}}}

User Sweetie
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories