111k views
5 votes
For what values of a does the following system have at least 1 solution

3(a-5x)<1+x, 2-x/2>3+5(x-a)

1 Answer

0 votes

Answer:

• for the first inequality:


\dashrightarrow \: { \tt{3(a - 5x) < 1 + x}} \\ \\ { \tt{3a - 15x < 1 + x}} \\ \\ { \tt{3a < 1 + 16x}} \\ \\ { \boxed{ \tt{a = (1 + 16x)/(3) \: \: { \red{}} }}}

• for the second inequality:


\dashrightarrow \: { \tt{ (2 - x)/(2) > 3 + 5(x - a) }} \\

substitute for a:


{ \tt{ (2 - x)/(2) > 3 + 5(x - (1 + 16x)/(3) ) }} \\ \\ { \tt{ (2 - x)/(2) > 3 - (5 + 80x)/(3) }} \\ \\ { \tt{2 - x > 6 - (10 + 160x)/(3) }} \\ \\ { \tt{6 - 3x > 18 - 10 - 160x}} \\ \\ { \tt{157x > 2}} \\ \\ { \tt{x > (2)/(157) }}

• substitute to get value of a: [ first inequality ]


{ \tt{a < (1 + 16( (2)/(157)) )/(3) }} \\ \\{ \boxed{ \tt{a < (63)/(157) }}}

[ second inequality ]


{ \boxed{ \tt{a > (65)/(157) }}}

User MahanTp
by
3.1k points