111k views
5 votes
For what values of a does the following system have at least 1 solution

3(a-5x)<1+x, 2-x/2>3+5(x-a)

1 Answer

0 votes

Answer:

• for the first inequality:


\dashrightarrow \: { \tt{3(a - 5x) < 1 + x}} \\ \\ { \tt{3a - 15x < 1 + x}} \\ \\ { \tt{3a < 1 + 16x}} \\ \\ { \boxed{ \tt{a = (1 + 16x)/(3) \: \: { \red{}} }}}

• for the second inequality:


\dashrightarrow \: { \tt{ (2 - x)/(2) > 3 + 5(x - a) }} \\

substitute for a:


{ \tt{ (2 - x)/(2) > 3 + 5(x - (1 + 16x)/(3) ) }} \\ \\ { \tt{ (2 - x)/(2) > 3 - (5 + 80x)/(3) }} \\ \\ { \tt{2 - x > 6 - (10 + 160x)/(3) }} \\ \\ { \tt{6 - 3x > 18 - 10 - 160x}} \\ \\ { \tt{157x > 2}} \\ \\ { \tt{x > (2)/(157) }}

• substitute to get value of a: [ first inequality ]


{ \tt{a < (1 + 16( (2)/(157)) )/(3) }} \\ \\{ \boxed{ \tt{a < (63)/(157) }}}

[ second inequality ]


{ \boxed{ \tt{a > (65)/(157) }}}

User MahanTp
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories