127k views
1 vote
Topic :- Calculus (integral)

Solve the integration:-
∫ (sin x. cos x. tan x) dx​

1 Answer

0 votes


\\ \sf\longmapsto {\displaystyle{\int}}(sinx.cosx.tanx) dx


\\ \sf\longmapsto {\displaystyle{\int}}sinx.\cancel{cosx}.\frac{sinx}{\cancel{cosx}}dx


\\ \sf\longmapsto {\displaystyle{\int}}sinx.sinx \:dx


\\ \sf\longmapsto {\displaystyle{\int}}sin^2x\:dx


\\ \sf\longmapsto {\displaystyle{\int}}(1-cos2x)/(2)dx


\\ \sf\longmapsto (1)/(2){\displaystyle{\int}}1-cos2x


\\ \sf\longmapsto (1)/(2){\displaystyle{\int}}dx-(1)/(2){\displaystyle{\int}}cos2x


\\ \sf\longmapsto (1)/(2)x-(1)/(2){\displaystyle{\int}}cos2xdx

Here Taking

  • u=2x

Then

  • du=2dx

Now put values


\\ \sf\longmapsto (1)/(2)du=dx

Then


\\ \sf\longmapsto (1)/(2)x-(1)/(2){\displaystyle{\int}}cos2xdx


\\ \sf\longmapsto (1)/(2)x-(1)/(2)* (1)/(2){\displaystyle{\int}}cosudu


\\ \sf\longmapsto (1)/(2)x-(1)/(4){\displaystyle{\int}}cosudu


\\ \sf\longmapsto (1)/(2)x-(1)/(4)sin u


\\ \sf\longmapsto\underline{\boxed{\bf{(1)/(2)x-(1)/(4)sin 2x+C}}}

User Babyburger
by
4.3k points