210 views
4 votes
0=A+B
1=A-3B+C
-1=-2A-2C

Find the values of A, B and C

User Kelsadita
by
4.3k points

1 Answer

6 votes

Solving Systems of 3 Equations

Answer:


A = \frac16\\,
B = -\frac16\\ and
C = \frac13\\

Explanation:

Given:


&0 = A +B \\ &1 = A -3B +C \\ &-1 = 2A -2C

Rewriting
0=A+B:


0 = A +B \\ -A = B

Rewriting
1=A-3B+C:


1 = A -3B +C \\ 1 = A -3(-A) +C \\ 1 = A +3A +C \\ 1 = 4A +C \\ 1 -C = 4A \\ (1 -C)/(4) = A

Rewriting
-1=-2A-2C:


-1 = -2A -2C \\ 2C -1 = -2A \\ (2C -1)/(-2) = A \\ -(2C -1)/(2) = A

Since
A = -(2C -1)/(2)\\ and
A = (1 -C)/(4)\\ also, therefore
(1 -C)/(4) = -(2C -1)/(2)\\. We can now solve for
C from the resulting equation.

Solving for
C:


(1 -C)/(4) = -(2C -1)/(2) \\ 1 -C = 2 \cdot -(2C -1) \\ 1 -C = -2(2C -1) \\ 1 -C = -4C +2 \\ -C = -4C +1 \\ 3C = 1 \\ C = (1)/(3)

Solving for
A:


(1 -C)/(4) = A \\ (1 -(1)/(3))/(4) = A \\ ((3)/(3) -(1)/(3))/(4) = A \\ ((2)/(3))/(4) = A \\ (2)/(3) \cdot (1)/(4) = A \\ (2)/(12) = A \\ \frac16 = A

Solving for
B:


-A = B \\ -\frac16 = B

User Gmtek
by
4.5k points