Answer:
Explanation:
Correct option is
A
[0,1]
Given :
f(x)=
(x−1)(3−x)
=
−x
2
+4x−3
=
−x
2
+4x−4+1
f(x)=
1−(x−2)
2
maximum value at f(x) will be '1'
when (x−2)=0
so, f
max
=1
minimum when (x−2)
2
=1
x−2=±1
x=3 or x=1
so, minimum =
1−1
=0
so Range = [0,1]→ option 'A'