140k views
5 votes
Given the definitions of f(x) and g(a) below, find the value of (f og)(-4).

f(x) = 3x2 – 5x – 4
g(x) = -4x – 12

User DMurdZ
by
3.6k points

2 Answers

3 votes

✏️ FUNCTIONS


\purple{\underline {\bold{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}}


\bold \purple{PROBLEM:}

» Given the definitions of f(x) and g(a) below, find the value of (f • g)(-4).

  • f(x) = 3x2 – 5x – 4
  • g(x) = -4x – 12


\bold \purple{FORMULA:}


\underline{ \boxed{ \rm{ \green{(f \: • \: g)( - 4) }}}}


\bold \purple{SOLUTION:}

Substitute the value of x into the given value which is -4. Lets simplify it.


» \: \rm{(f \: • \: g)(-4) = [3 {x}^(2) – 5x – 4] \: • \: [-4x – 12]}


» \: \rm{(f \: • \: g)( \green{-4}) = [3 {( \green{ - 4})}^(2) – 5( \green{ - 4}) – 4 ]\: • \: [-4( \green{- 4})– 12]}


» \: \rm{(f \: • \: g)( \green{-4}) =[ 3( \green {16}) – ( \green{ - 20}) – 4 ]\: • \:[ ( \green{16})– 12]}


» \: \rm{(f \: • \: g)( \green{-4}) = [ \green {48}– ( \green{ - 20}) – 4 ]\: • \:[ ( \green{4})]}


» \: \rm{(f \: • \: g)( \green{-4}) =[ \green{ 64}] \: • \: [( \green{4})]}


» \: \rm{(f \: • \: g)( \green{-4}) = \underline{\boxed{\green{256}}}}


\bold \purple{ANSWER:}


» \: \rm{(f \: • \: g)( \green{-4}) = \underline{\boxed{\green{256}}}}

  • Hence, the answer is 256.


\purple{\underline {\bold{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}}

\(^.^\)

User Tzenderman
by
3.2k points
6 votes

To solve for (fog)-4)

Replace x in the g(x) equation with -4 and solve, then replace x in f(x) with the solution and solve for final answer.

G(x) = -4(-4) -12 = 16 -12 = 4

F(x) = 3(4)^2 -5(4) -4 = 48 -20 -4 = 24

The answer is 24

User Lummers
by
3.4k points