150k views
9 votes
Please answer this question​

Please answer this question​-example-1

1 Answer

4 votes

We are given with the function
{\bf{f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}} and we need to find
{\bf \\abla f} , that's nothing but just the gradient of f(x,y,z) . But before starting let's recall ;

For a function F(x, y, z, ....) , the gradient is given by ;


  • {\boxed{\bf{\\abla F=(\partial F)/(\partial x)\hat{i}+(\partial F)/(\partial y)\hat{j}+(\partial F)/(\partial z)\hat{k}+\cdots}}}

So , now let's calculate the partial derivatives of f(x, y, z) first with respect to x , y and z one after other .So consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.x will yield ;


{:\implies \quad \sf (\partial f)/(\partial x)=e^(x+y)\cos (z)+(y+1)at\frac{1}{\sqrt{1-x^(2)}}}

Simplifying will yield ;


{:\implies \quad \sf (\partial f)/(\partial x)=\frac{e^(x+y)\cos (z)\sqrt{1-x^(2)}+(y+1)at}{\sqrt{1-x^(2)}}}

Now again consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.y will yield ;


{:\implies \quad \sf (\partial f)/(\partial y)=e^(x+y)\cos (z)+\sin^(-1)(x)at}

Now , again consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.z will yield ;


{:\implies \quad \sf (\partial f)/(\partial z)=-e^(x+y)\sin (z)}


{:\implies \quad \bf \therefore \quad \underline{\underline{\\abla f=\bigg\{\frac{e^(x+y)\cos (z)\sqrt{1-x^(2)}+(y+1)at}{\sqrt{1-x^(2)}}\bigg\}\hat{i}+\bigg\{e^(x+y)\cos (z)+\sin^(-1)(x)at\bigg\}\hat{j}-\bigg\{e^(x+y)\sin (z)\bigg\}\hat{k}}}}

This is the required answer

Used Concepts :-


  • {\boxed{\bf{(d)/(dx)\{\sin^(-1)(x)\}=\frac{1}{\sqrt{1-x^(2)}}}}}


  • {\boxed{\bf{(d)/(dx)(e^x)=e^(x)}}}


  • {\boxed{\bf{(d)/(dx)\{\cos (x)\}=-\sin (x)}}}

User Tomglynch
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories