150,100 views
9 votes
9 votes
Please answer this question​

Please answer this question​-example-1
User Gaurang Deshpande
by
3.2k points

1 Answer

4 votes
4 votes

We are given with the function
{\bf{f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}} and we need to find
{\bf \\abla f} , that's nothing but just the gradient of f(x,y,z) . But before starting let's recall ;

For a function F(x, y, z, ....) , the gradient is given by ;


  • {\boxed{\bf{\\abla F=(\partial F)/(\partial x)\hat{i}+(\partial F)/(\partial y)\hat{j}+(\partial F)/(\partial z)\hat{k}+\cdots}}}

So , now let's calculate the partial derivatives of f(x, y, z) first with respect to x , y and z one after other .So consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.x will yield ;


{:\implies \quad \sf (\partial f)/(\partial x)=e^(x+y)\cos (z)+(y+1)at\frac{1}{\sqrt{1-x^(2)}}}

Simplifying will yield ;


{:\implies \quad \sf (\partial f)/(\partial x)=\frac{e^(x+y)\cos (z)\sqrt{1-x^(2)}+(y+1)at}{\sqrt{1-x^(2)}}}

Now again consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.y will yield ;


{:\implies \quad \sf (\partial f)/(\partial y)=e^(x+y)\cos (z)+\sin^(-1)(x)at}

Now , again consider ;


{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}

Partial differentiating both sides w.r.t.z will yield ;


{:\implies \quad \sf (\partial f)/(\partial z)=-e^(x+y)\sin (z)}


{:\implies \quad \bf \therefore \quad \underline{\underline{\\abla f=\bigg\{\frac{e^(x+y)\cos (z)\sqrt{1-x^(2)}+(y+1)at}{\sqrt{1-x^(2)}}\bigg\}\hat{i}+\bigg\{e^(x+y)\cos (z)+\sin^(-1)(x)at\bigg\}\hat{j}-\bigg\{e^(x+y)\sin (z)\bigg\}\hat{k}}}}

This is the required answer

Used Concepts :-


  • {\boxed{\bf{(d)/(dx)\{\sin^(-1)(x)\}=\frac{1}{\sqrt{1-x^(2)}}}}}


  • {\boxed{\bf{(d)/(dx)(e^x)=e^(x)}}}


  • {\boxed{\bf{(d)/(dx)\{\cos (x)\}=-\sin (x)}}}

User Tomglynch
by
3.3k points