We are given with the function
and we need to find
, that's nothing but just the gradient of f(x,y,z) . But before starting let's recall ;
For a function F(x, y, z, ....) , the gradient is given by ;
So , now let's calculate the partial derivatives of f(x, y, z) first with respect to x , y and z one after other .So consider ;
Partial differentiating both sides w.r.t.x will yield ;
![{:\implies \quad \sf (\partial f)/(\partial x)=e^(x+y)\cos (z)+(y+1)at\frac{1}{\sqrt{1-x^(2)}}}](https://img.qammunity.org/2023/formulas/mathematics/college/hj9ovefoxt3ezrnm3gypye7iia8fo47hob.png)
Simplifying will yield ;
![{:\implies \quad \sf (\partial f)/(\partial x)=\frac{e^(x+y)\cos (z)\sqrt{1-x^(2)}+(y+1)at}{\sqrt{1-x^(2)}}}](https://img.qammunity.org/2023/formulas/mathematics/college/nt89gmn06jubzrehjw14bgap1ww5rux8ql.png)
Now again consider ;
![{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}](https://img.qammunity.org/2023/formulas/mathematics/college/kk1ry84vf6faie093lsv7vy9mva527o78m.png)
Partial differentiating both sides w.r.t.y will yield ;
Now , again consider ;
![{:\implies \quad \sf f(x,y,z)=e^(x+y)\cos (z)+(y+1)\sin^(-1)(x)at}](https://img.qammunity.org/2023/formulas/mathematics/college/kk1ry84vf6faie093lsv7vy9mva527o78m.png)
Partial differentiating both sides w.r.t.z will yield ;
This is the required answer
Used Concepts :-