121k views
12 votes
Please answer this question​

Please answer this question​-example-1

2 Answers

7 votes

We are given with an integral and need to solve the integral , so let's start ;


{:\implies \quad \displaystyle \int \sf (\cos^(2)(x))/(1+\sin (x))dx}

As we know that sin²(x) + cos²(x) = 1 , using this


{:\implies \quad \displaystyle \int \sf (1-\sin^(2)(x))/(1+\sin (x))dx}

Can be further written as


{:\implies \quad \displaystyle \int \sf (1^(2)-\sin^(2)(x))/(1+\sin (x))dx}


{:\implies \quad \displaystyle \int \sf \frac{\cancel{\{1+\sin (x)\}}\{1-\sin (x)\}}{\cancel{\{1+\sin (x)\}}}dx\quad \qquad \{\because a^(2)-b^(2)=(a+b)(a-b)\}}


{:\implies \quad \displaystyle \int \sf \{1-\sin (x)\}dx}

Now , as integrals follow distributive property , so ;


{:\implies \quad \displaystyle \int \sf 1\: dx-\int \sin (x)dx}

Now , as antiderivative (Integration) of sin(x) is -cos(x) + C and that of dx is x + C So ;


{:\implies \quad \displaystyle \bf \therefore \underline{\underline{\int \bf (\cos^(2)(x))/(1+\sin (x))=x+\cos (x)+C}}}

This is the Required answer

User Sebkopf
by
8.2k points
5 votes


\bold{\huge{\underline{ Solution }}}

Here, we will use the concept of integration and algebric identities

  • Integration is the process of finding function that is a derivate of given function
  • Three important trigonometric identities :-

  1. \sf{ sin^(2){\theta}+ cos^(2){\theta} = 1 }

  2. \sf{ 1 + tan^(2){\theta} = sec^(2){\theta} }

  3. \sf{ 1 + cot^(2){\theta} = cosec^(2){\theta} }

Let's Begin :-

We have,


\bold{\displaystyle\int}{\bold{( cos^(2)x)/(1 + sinx)}}{\bold{dx}}

By using trigonometric identity,


  • \sf{ sin^(2){\theta}+ cos^(2){\theta} = 1 }


\sf{\displaystyle\int}{\sf{( 1 -sin^(2)x )/(1 + sinx)}}{\sf{dx}}

By using algebraic identity :-


  • \sf{ a^(2) - b^(2) = ( a + b) (a - b) }


\sf{\displaystyle\int}{\sf{( (1 + sinx) (1 - sinx) )/(1 + sinx)}}{\sf{dx}}


\sf{\displaystyle\int}{\sf{( 1 - Sinx)dx}}


\sf{ {\displaystyle\int} dx - {\displaystyle\int}sinxdx}

We know that,


  • \sf{{\int\displaystyle}sin{\theta} d{\theta} = - cos {\theta} + C }


\sf{ x - (-cosx) + c}


\bold{ x + cosx + c}

Hence, The answer is x + Cosx + c.

User MichM
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories