We are given with an integral and need to solve the integral , so let's start ;
As we know that sin²(x) + cos²(x) = 1 , using this
Can be further written as
![{:\implies \quad \displaystyle \int \sf (1^(2)-\sin^(2)(x))/(1+\sin (x))dx}](https://img.qammunity.org/2023/formulas/mathematics/college/wd5qvl0wtmeve9hxhrt0mv92df74jl0s6o.png)
![{:\implies \quad \displaystyle \int \sf \frac{\cancel{\{1+\sin (x)\}}\{1-\sin (x)\}}{\cancel{\{1+\sin (x)\}}}dx\quad \qquad \{\because a^(2)-b^(2)=(a+b)(a-b)\}}](https://img.qammunity.org/2023/formulas/mathematics/college/dsujcnd9rtimcacybloj2qe6mmpoqrhctj.png)
![{:\implies \quad \displaystyle \int \sf \{1-\sin (x)\}dx}](https://img.qammunity.org/2023/formulas/mathematics/college/nav7wh396b5bo1360zpiu5cf6m6ndw0fk0.png)
Now , as integrals follow distributive property , so ;
![{:\implies \quad \displaystyle \int \sf 1\: dx-\int \sin (x)dx}](https://img.qammunity.org/2023/formulas/mathematics/college/zwbyzy3qj75bzv4dw4feujx9eq550fcugf.png)
Now , as antiderivative (Integration) of sin(x) is -cos(x) + C and that of dx is x + C So ;
![{:\implies \quad \displaystyle \bf \therefore \underline{\underline{\int \bf (\cos^(2)(x))/(1+\sin (x))=x+\cos (x)+C}}}](https://img.qammunity.org/2023/formulas/mathematics/college/qser6mbr4gqbkrrl9tv29qi3tv13daaqpw.png)
This is the Required answer