121k views
12 votes
Please answer this question​

Please answer this question​-example-1

2 Answers

7 votes

We are given with an integral and need to solve the integral , so let's start ;


{:\implies \quad \displaystyle \int \sf (\cos^(2)(x))/(1+\sin (x))dx}

As we know that sin²(x) + cos²(x) = 1 , using this


{:\implies \quad \displaystyle \int \sf (1-\sin^(2)(x))/(1+\sin (x))dx}

Can be further written as


{:\implies \quad \displaystyle \int \sf (1^(2)-\sin^(2)(x))/(1+\sin (x))dx}


{:\implies \quad \displaystyle \int \sf \frac{\cancel{\{1+\sin (x)\}}\{1-\sin (x)\}}{\cancel{\{1+\sin (x)\}}}dx\quad \qquad \{\because a^(2)-b^(2)=(a+b)(a-b)\}}


{:\implies \quad \displaystyle \int \sf \{1-\sin (x)\}dx}

Now , as integrals follow distributive property , so ;


{:\implies \quad \displaystyle \int \sf 1\: dx-\int \sin (x)dx}

Now , as antiderivative (Integration) of sin(x) is -cos(x) + C and that of dx is x + C So ;


{:\implies \quad \displaystyle \bf \therefore \underline{\underline{\int \bf (\cos^(2)(x))/(1+\sin (x))=x+\cos (x)+C}}}

This is the Required answer

User Sebkopf
by
3.4k points
5 votes


\bold{\huge{\underline{ Solution }}}

Here, we will use the concept of integration and algebric identities

  • Integration is the process of finding function that is a derivate of given function
  • Three important trigonometric identities :-

  1. \sf{ sin^(2){\theta}+ cos^(2){\theta} = 1 }

  2. \sf{ 1 + tan^(2){\theta} = sec^(2){\theta} }

  3. \sf{ 1 + cot^(2){\theta} = cosec^(2){\theta} }

Let's Begin :-

We have,


\bold{\displaystyle\int}{\bold{( cos^(2)x)/(1 + sinx)}}{\bold{dx}}

By using trigonometric identity,


  • \sf{ sin^(2){\theta}+ cos^(2){\theta} = 1 }


\sf{\displaystyle\int}{\sf{( 1 -sin^(2)x )/(1 + sinx)}}{\sf{dx}}

By using algebraic identity :-


  • \sf{ a^(2) - b^(2) = ( a + b) (a - b) }


\sf{\displaystyle\int}{\sf{( (1 + sinx) (1 - sinx) )/(1 + sinx)}}{\sf{dx}}


\sf{\displaystyle\int}{\sf{( 1 - Sinx)dx}}


\sf{ {\displaystyle\int} dx - {\displaystyle\int}sinxdx}

We know that,


  • \sf{{\int\displaystyle}sin{\theta} d{\theta} = - cos {\theta} + C }


\sf{ x - (-cosx) + c}


\bold{ x + cosx + c}

Hence, The answer is x + Cosx + c.

User MichM
by
4.3k points