313,759 views
44 votes
44 votes
Answer the Both Question in the image using the knowledge of Volume of Solid. 50 points​

Answer the Both Question in the image using the knowledge of Volume of Solid. 50 points-example-1
User Fmpdmb
by
3.3k points

2 Answers

11 votes
11 votes

given for cone:

  • radius: a
  • height: 2a

volume of cone:


\sf \rightarrow (1)/(3) \pi r^2h


\sf \rightarrow (1)/(3) \pi (a)^2(2a)


\sf \rightarrow (2\pi a^3)/(3)

no metal wasted means no volume wasted while melting so volume: same.

volume of hemisphere:


\hookrightarrow \sf (2)/(3) \pi r^3

This is equal to the volume of cone.


\hookrightarrow \sf (2)/(3) \pi r^3 = (2\pi a^3)/(3)


\hookrightarrow \sf a^3 = r^3


\hookrightarrow \sf a = r

Therefore shown that radius of cone is similar to radius of hemisphere.

(b)


6.82^2 *\sqrt[3]{0.005}


7.9535


7.95

User Seku
by
2.6k points
25 votes
25 votes

Answer:

Part A

Cone


\mathsf{volume \ of \ a \ cone=\frac13\pi r^2h}

(where r is the radius and h is the height)

Given:

  • r = a
  • h = 2r = 2a


\implies \mathsf{volume \ of \ the \ cone=\frac13\pi \cdot a^2\cdot2a=\frac23\pi a^3}

Hemisphere


\mathsf{volume \ of \ a \ sphere=\frac43\pi r^3}


\implies \mathsf{volume \ of \ a \ hemisphere=\frac12 \cdot\frac43\pi r^3=\frac23\pi r^3}

Given

  • r = a


\implies \mathsf{volume \ of \ the \ hemisphere=\frac23\pi a^3}

Therefore

volume of cone with radius a = volume of hemisphere with radius a

Part B


6.82^2*\sqrt[3]{0.005}

Take log of base 10:


\implies \log_(10)(6.82^2*\sqrt[3]{0.005})

Using log law
\log(a * b)=\log a+\log b:


\implies \log_(10)(6.82^2)+\log_(10)(\sqrt[3]{0.005})

Using low law
\log(a^b)=b \log a


\implies 2\log_(10)(6.82)+\frac13\log_(10)(0.005)

Log tables

The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.

The mantissa is found using the log tables and is always prefixed by a decimal point.

The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number

Use the log tables to find
\log_(10)(6.82):

6.82 = 6.82 × 10⁰

⇒ characteristic = 0

log table: row 68, column 2 ⇒ mantissa 8338 ⇒ 0.8338

characteristic + mantissa = 0 + 0.8338 = 0.8338

Therefore,
\log_(10)(6.82)=0.8338

Use the log tables to find
\log_(10)(0.005):


0.005 = 5.0 * 10^(-3)

⇒ characteristic = -3

log table: row 50, column 0 ⇒ mantissa 6990 ⇒ 0.6990

characteristic + mantissa = -3 + 0.6990 = -2.301

Therefore,
\log_(10)(0.005)=-2.301

Therefore,


2\log_(10)(6.82)+\frac13\log_(10)(0.005)


\implies 2\cdot0.8338 + \frac13 \cdot -2.301


\implies 1.6676 - 0.767


\implies 0.9006

Therefore,


\log_(10)(6.82^2*\sqrt[3]{0.005})=0.9006

Using
\log_(a)b=c \implies a^c=b


\implies 6.82^2*\sqrt[3]{0.005}=10^(0.9006)


\implies 6.82^2*\sqrt[3]{0.005}=7.954

User SarthAk
by
3.4k points