123k views
0 votes
Differentiate x2/3 - y2/3 = 6 with respect to x and evaluate the derivative at (8, 1).

1 Answer

5 votes

Implicit Differentiation

Explanation:

Given:


x^{(2)/(3)} -y^{(2)/(3)} = 6\\

Recall:


x^{(2)/(3)} -y^{(2)/(3)} = 6 \\ \frac{\text{d}}{\text{d}x}(x^{(2)/(3)} -y^{(2)/(3)}) = \frac{\text{d}}{\text{d}x}(6) \\ \frac{\text{d}}{\text{d}x}(x^{(2)/(3)}) -\frac{\text{d}}{\text{d}x}(y^{(2)/(3)}) = 0 \\ (2)/(3)x^{(2)/(3) -1} -(2)/(3)y^{(2)/(3) -1}\cdot \frac{\text{d}y}{\text{d}x} = 0 \\ (2)/(3)x^{-(1)/(3)} - (2)/(3)y^{-(1)/(3)} \cdot \frac{\text{d}y}{\text{d}x} = 0 \\ \frac{2}{3\sqrt[3]{x}} -\frac{2}{3\sqrt[3]{y}}\cdot \frac{\text{d}y}{\text{d}x} = 0 \\ -\frac{2}{3\sqrt[3]{y}}\cdot \frac{\text{d}y}{\text{d}x} = -\frac{2}{3\sqrt[3]{x}} \\ -2 \cdot \frac{\text{d}y}{\text{d}x} = -\frac{6\sqrt[3]{y}}{3\sqrt[3]{x}} \\ \frac{\text{d}y}{\text{d}x} = -\frac{6\sqrt[3]{y}}{-6\sqrt[3]{x}} \\ \frac{\text{d}y}{\text{d}x} = \frac{\sqrt[3]{y}}{\sqrt[3]{x}}

User Plasma
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories