Answer:
A = 2
B = -1
C = 3
remainder= 19
Explanation:
A(x+1)³ + B(x+1)² + Cx + 22 =
A(x³ + 3x² + 3x + 1) + B(x² + 2x + 1) + Cx + 22 =
Ax³ + (3A + B)x² + (3A + 2B + C)x + (A + B + 22) =
2x³ + 5x² + 7x + 23
→
A = 2
3A + B = 5 → 3(2) + B = 5 → B = 5 - 6 → B = -1
3A + 2B + C = 7 → 3(2) + 2(-1) + C = 7 → C = 7 - 6 + 2 →
C = 3
remainder :
(2x³ + 5x² + 7x + 23 )/ (x² + 2x + 1) =
(2x³ + 5x² + 7x + 23 )/ (x + 1)²
→
(x + 1)² = 0 → x = -1
2(-1)³ + 5(-1)² + 7(-1) + 23 = -2 + 5 - 7 + 23 = 19