Answer:
![\displaystyle \frac{ {3x}^(2) }{ 35 } + \frac{{2y}^(2) }{ 35 } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/uz1i7t4mq41y6gsz3fngp5e9zrz65qnvhq.png)
Explanation:
we want to figure out the ellipse equation which passes through (1,4) and (-3,2)
the standard form of ellipse equation is given by:
![\displaystyle \frac{(x - h {)}^(2) }{ {a}^(2) } + \frac{(y - k {)}^(2) }{ {b}^(2) } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/du9odmsgnsc78u55dol0zxb3z7zt85rzck.png)
where:
- (h,k) is the centre
- a is the horizontal redius
- b is the vertical radius
since the centre of the equation is not mentioned, we'd assume it (0,0) therefore our equation will be:
![\displaystyle \frac{ {x}^(2) }{ {a}^(2) } + \frac{{y}^(2) }{ {b}^(2) } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/w8vmvqypatx1g1jh5i9z7zhfwn9hzejj06.png)
substituting the value of x and y from the point (1,4),we'd acquire:
![\displaystyle \frac{ 1}{ {a}^(2) } + \frac{16}{ {b}^(2) } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/tyuwcqe9g29xaez5unxd67o0c7na204qu8.png)
similarly using the point (-3,2), we'd obtain:
![\displaystyle \frac{ 9}{ {a}^(2) } + \frac{4 }{ {b}^(2) } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/689yf83br09frsrembotko10griv7oqcy2.png)
let 1/a² and 1/b² be q and p respectively and transform the equation:
![\displaystyle \begin{cases} q + 16p = 1 \\ 9q + 4p = 1 \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/4jlhv3j7j7vp66x4ss6vfl5j5z75inx1gp.png)
solving the system of linear equation will yield:
![\displaystyle \begin{cases} q = (3)/(35) \\ \\ p = (2)/(35) \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/fqob5kwupgh3879nhqkwl3itomlphzpsvl.png)
substitute back:
![\displaystyle \begin{cases} \frac{1}{ {a}^(2) } = (3)/(35) \\ \\ \frac{1}{ {b}^(2) } = (2)/(35) \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/3x0yf8g5hnd8qyx76oxjw920lfpye7bpin.png)
divide both equation by 1 which yields:
![\displaystyle \begin{cases} {a}^(2) = (35)/( 3) \\ \\ {b}^(2) = (35)/(2) \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/tnvna07r232fbzodatykmjb5763bfk1zvk.png)
substitute the value of a² and b² in the ellipse equation , thus:
![\displaystyle \frac{ {x}^(2) }{ (35)/(3) } + \frac{{y}^(2) }{ (35)/(2) } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/e39tslgvysryf42gytnezda29seqiaiesy.png)
simplify complex fraction:
![\displaystyle \frac{ {3x}^(2) }{ 35 } + \frac{{2y}^(2) }{ 35 } = 1](https://img.qammunity.org/2022/formulas/mathematics/college/uz1i7t4mq41y6gsz3fngp5e9zrz65qnvhq.png)
and we're done!
(refer the attachment as well)