18.4k views
1 vote
If f(x)=(x-8)^2. for x≥8, find the inverse of f, f^-1(x).

User DreamWave
by
5.2k points

1 Answer

7 votes

If
f^(-1)(x) is the inverse of
f(x)=(x-8)^2 for
x\ge8, then for
f^(-1)(x)\ge8 we have


f\left(f^(-1)(x)\right) = \left(f^(-1)(x)-8\right)^2 = x \\\\ \sqrt{\left(f^(-1)(x)-8\right)^2} = √(x) \\\\ f^(-1)(x)-8 = √(x) \\\\ \boxed{f^(-1)(x) = 8+√(x)}

More precisely,


\sqrt{\left(f^(-1)(x)-8\right)^2} = \left|f^(-1)(x)-8\right|

but since the inverse is at least 8, the quantity inside the absolute is non-negative, so


\sqrt{\left(f^(-1)(x)-8\right)^2} = f^(-1)(x)-8

User Wajdi Hh
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.